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A Study on Kinetic Parameters for Biomass Growth by Variations of
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Table 2. Comparison of bubble sizes and contact areas

Bubble sizes Contact areas
Imm @ 100xm 1:10
Imm @ 10mm 1:100
Imm @ 1gm 1: 1,000
Tmm : O.1pm 1 : 10,000
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Table 3. Size comparison of conventional bubbles and micro—nano bubbles

Diameter Area Volume Contact grea
Parameters (nm) (i) (i) per unit
bubble size
Ceramic fine
bubbles 2~3 50~113 34~113 15~1
Medium
bubbles 3~4 113~201 113~268 1~0.75
Coarse
bubbles 10 1,256 4,187 0.3
Micromnano |1 16, | 00314~804 | 52%10% ~2.14 | 60.4~38
bubbles
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Table 4. General classification of the microorganism according to energy

and carbon source
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Microorganism
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. J 4 2
—autotrophic of inorganic matter
Chemo Oxidation-reduction Organic
) ~heterotrophic | reaction of organic matter matter
Heterotrophic -
Photo ) Organic
) Light
—heterotrophic matter
7b AaARAE
n Ao thak AFA A FH & (Oxygen uptake rate, OUR)9] =4S 37|14
Mo BYE g ARLA AA oA /EE AR FRZ A

Hol gon,

=714

Z71e AETA

21

AgAy T4 &&Fo=H



Fhseheha eeld QopT,

Mo

0

Ton

el

;OH

oy

—_—

0

"
G
G

G om, w4

p

0 Azs ol

s

9 1Ee 44

2
BOD®] #raxoF vz A%l

=

o| A&

s,

&

H
"

o
H

X0
gl

e AaE ALE

B

A

-
T

a4 # e COD

Uepa,

ol
W

0

7A
gl

,;Aﬂ
ot

4

s 7HAa

2 HHaA

o
A
el
=
&
o)

Ao
oF

N

—

B

Mo

et FrlE ek vAdlE §A4 SERANA ALE 4N

o] 7h e,

oF
B
H

o @

sl

of ojsto] 1Ay

ruze]

Al

s

ol

oy

12_.0
_Z_ﬂ

N

il
olm

ol
ol

EA 5=
8

At

1A = o]

-
T

)

Ao 24 DO meter

R ozt A

=
<]

Al

ol
ol

+o]

S

=
=

ol
ol

o=

JER 2

k=

2]

JASS
T

o]t} Table 5%

22



Table 5. Principal of respirometer
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(5) FEIY¥ VIAEY H H AR ES XS F5o FA

Aot SIE il Sse 2 (22)o oA AAE
A A E bpg ol ESHH tmaxn®t Ks7b 242

4
o
o

KS(1/9c+ bH)
fmax,r— (1/6,.4+ by) (28)

=

Yuel bps o1& A 2ol pant Ksg& TFote 7HE £& W2 o

o S

A8 HZA A5 (nonlinear least squares analysis)S o] &3t Aot} S

= EYRFEA 16 + bus 5 WFEA 43 Aok 0 HaAFY
of Mg YAL A FEI WG Wl AFeA ek 4 (22)
=AY A AFRE AT A AFL, 3744 wHel EARHY,
Hanes Linearization
S K S
Sl R e’ (29)
1/9¢+ bH N‘max,H :U‘max.,H
Hofstee Linearization
1/9¢+ bH MmaxH 1
= . —(1/0.+ b
SS KS + KS( / c+ H) (30)
Lineweaver-Burk Linearization
1 o Mmax,H 1 - L
Sy Ky (1/9C+ bH) Ky (D)
U, 234 =29
FAE&EHA ZA(ASM Nol)e Ee AFEL ¥x3ste] v$- B#sit
a8y 2E Hdd gk Al BRF5E HUME 28+ §loh dF Al
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Table 6°] 7} st
o] ol A3tsh

dAEYUARLE LS 3]

=

Table 6. Coefficients of assuming in active sludge model

Symbols Descriptions
Ya Yield for autotrophic biomass
bra Decay coefficient for autotrophic biomass
p Fraction of biomass leading to debris
in/Xg Mass of nitrogen per mass of COD in biomass
In/Xp Mass of nitrogen per mass of COD in biomass debris
Kon Oxygen half-saturation coefficient for heterotrophic biomass
Kno Nitrate half-saturation coefficient for denitrifying heterotrophic biomass
Koa Oxygen half-saturation coefficient for autotrophic biomass
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Table 7. Typical coefficients in active sludge model

Symbols Units Valuce Valuce
at 0C | at 10C
Stoichiometric parameters
Ya | g cell COD formed (g N oxidized) 024 | 024
Yi | g cell COD formed (g COD oxidized) 067 | 067
fp’ dimensionless 0.08 0.08
ixs | g N (g COD)" in biomass 0.086 | 0.086
iXE g N (g COD) ! in endogenous 0.06 0.06
Kinetic parameter
ny |day 6.0 3.0
Ks |g COD m” 200 | 200
Kou |g Oem” 0.20 0.20
Kxvo | g NO3Nm” 050 | 050
bLa | day 0.10
bLy | day 0.62 0.20
by day 0.18
Ng dimensionless 0.8 0.8
Nh dimensionless 0.4 0.4
kn g slowly bildegradable COD (g cell COD-day) 3.0 1.0
Kx | g slowly bildegradable COD (g cell COD)! 003 | 001
A | day 0.80 0.3
Kxg | g NHs-N m’” 1.0 1.0
Koa |g Oom” 0.4 0.4
K. | m*COD(gday)" 008 | 004
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1. 433X
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Fig. 9. Photographs of MND(Micro nano diffuser) reactor.
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ol nAE] A4S 98 AEAE ARt FEd F7]E F@l DO
T=7F 6.0~80 mg/LE FA8IA L A= BA KakeAgde] 271x W
Fo] w &S o]&3le] MLSS(Mixture liquid suspended solid) 3,000~ 3,500
mg/LE AAZAT WieEs 71a71E §8l 20:11CE FAAFH e, pH
= 70+052 A&

DO, Temp.,
MLSS, pH

Fig. 11. Schematic of lab scale bioreactor.
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Table 8. Operating conditions

of GD and MND reactors

Raw water Parameters Units GD reactor MND reactor
Effective L 400 400
volume

Tap Water C 160 16.0
water temperature
Airflow rate L/min 1 1
Effective L 400 400
volume

Effluent of

primary Vid C 223 277
temperature

clarifier
Airflow rate L/min 1 1
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Input of tap water and textile wastewater of 400L
in GD reactor and MND reactor

< COClz dose of as catalyst
(Input 8 mg/L per DO 1
mg/L)
< Agitation for 30 min
< NaxS0s dose
(Input 7.9 mg/L per DO 1

mg/L)

Calibration of "0" as DO concentration

Measurement of water temperature

Calculation of saturated DO concentration(Cs) using Table 20 and equation
3D

Calculation of theoretical oxygen demand with saturated DO
concentration(Cs)

Input of 107 20% more than calculated NasSOs dose in reactor

Measurement of DO concentration until 90 ~ 95%

of saturated DO concentration(Cs)

Fig. 12. Procedure of oxygen mass transfer rate experiments.
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Table 9. Oxygen saturation concentration(Cs) of distilled water at standard

conditions
Temp.(C) | mg Ox/L | Temp.(C) | mg Oz/L | Temp.(C) | mg Oo/L
0 14.6 17 9.7 34 7.2
1 14.2 18 9.5 35 7.1
2 13.8 19 9.4 36 7.0
3 13.5 20 9.2 37 6.9
4 13.1 21 9.0 38 6.8
5 12.8 22 8.8 39 6.7
6 12.5 23 8.7 40 6.6
7 12.2 24 8.5 41 6.5
8 11.9 25 8.4 42 6.4
9 11.6 26 8.2 43 6.3
10 11.3 27 8.1 44 6.2
11 11.1 28 7.9 45 6.1
12 10.8 29 7.8 46 6.0
13 10.6 30 7.6 47 5.9
14 10.4 31 7.5 48 5.8
15 10.2 32 7.4 49 5.7
16 10.0 33 7.3 50 5.6
AgEFo] AAES FEE 0CAAME 146 mg/LEHE 20T 4 9.2 mg/L

U osge A o EaEEs Al malA we Aol v
o 5

Eop ko uwel 3s)

(Csw)ze0 = (475 - 0.002655)/(33.5 + T) (32)
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1714, (Csw)mo = H7IStol A Aol &4 23k (mg/L)
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=
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T: &%

Table 10. Analytical methods at oxygen transfer coefficients

Parameters Units Methods and Apparatus

Kia hr! dC/dt = Kio(Cs-C)

Oxygen transfer efficiency | g Oxhr | N = Koo * Csany * V
VOTR kg/m’ - hr | VOTR = Kia x C;

4. MAR4Y FYS AS 49

0] FHE o ATAAR(YY 2 A2UAS

X!,

A4S F Sz AAsdd. AENSE Wie 2051TE #

A ste] 989 o, GD reactor @ MND reactorol Al &&4k47F 314

W 7bA] S edste] AERkEFo] FAAFET. AERESEW 374§k

&4 MLVSSE 3,000 mg/L® f+Alst7] flaf 12 I A F459 F)

MLSS&%=E MLVSS/MLSSH| &0 a1ziste] s, 54 2 wkg-x9]

AdAg +HE 98 34 WEAl DO, pH, 2% % ORPE 5 min 7H4
o

W, 30 min FZ o2 A Fete] BA 5

32
ny
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4. EAEY

2 Ao FA2 FHAAFHAEH Y Standard methodsoll +=3f
o] AAstH o MLVSSE MLVSS/MLSS H &S o] &3¢ MLSS
meter Azl BAIT F Az &&sArt. AL AEe

&
GF/C filter paper2 1423 & CODcE #4134

Table 11. Water quality analytical methods

Parameters Analytical methods and apparatus
DO DO portable meter (model YSI 550A)
pH pH portable meter (model YSI 601-10 FT)

Temperature | DO portable meter (SDT 25)

COD¢;, K3CryO7 method (hot plate)
ORP ORP portable meter(RM-20P)
MLSS GF/C filter method, MLSS meter

MLVSS GF/C filter method, Electronic furnace
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TS I b

nto] ARZ UM E AR Y AAadGEAT S4S Fotetr] 98 dukal
7172 (Genernal diffuser reactor, GD reactor)2} wlo]laZ 2y w=rE Ak7| %+
%] (Micro nano diffuser reactor, MND reactor)?] DO =% 3}= Fig. 137
Fig. 14°] Yetlidth. Aol odA ol ol EFI} dstateES

TUs Ak as A1zl & 1.0 L/min FHo2 375

Ll
all

o,
o,

ol A -4 A3} GD reactor®t MND reactorol 4 Z+Z}F 380 min¥} 97
8 mg/Let 96 mg/Le v=Z yEeErH AT MND
97 min°ll Al GD reactor® DO ¥E+ 47
% l = B3t
A FE55E gz 143 GD reactor?t MND reactorol A
E % DO w5+ 47 443 mg/Le}
6.8 mg/LE YEMUAY. 5 +HAIZF 120 mindl A< DO =& H 13|
HM  GD reactor?} MND reactor® A% 27 DO 5%+ 293 mg/Le
443 mg/L% WEY MND reactorol Al &2 AHAdY @ &S e AL
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14.0

—e— GD (airflow 1.0 L/min)

12.0 SR ELLLLLLLEE LT —Oo—MND (alfﬁ0W1.0 L/mm) o

10.0

DO (mg/L)
oo
o

6.0
4.0
2.0
0.0
0 60 120 180 240 300 360 420
Time (min)

Fig. 13. Comparison of DO concentrations between GD and MND

reactors by tap water.

10.0

8.0 froc=ecccescecctcccccaacccttennntttcaceaieccettnctattatncattcettanstatssnnnsananannans

DO (mglL)
e
o

4.0 frocoffrccccmmmcccrnccceaeacaceaicccace e PPN e eeccceeccceaeceeeaee

T
—e— GD (airflow 1.0 L/min)
—0— MND (airflow 1.0 L/min)

0.0 - : - : - :
0 60 120 180 240 300 360 420

Time (min)

Fig. 14. Comparison of DO concentrations between GD and MND

reactors by effluent of primary clarifier.
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/}Z—KLaXt (34)

o] 71A, Cs @ E=HE(20TC, 1 atm)ol A9 23 DO 5% (mg/L)
Co - AlZF t=0914¢] DO &%= (mg/L)
C¢ + AIZE tell s DO 5% (mg/L)

- -1
K. : SZ=dd2As (hr)

O

regression o 2H A5 4 T} Fig. 15% Fig. 162 CB AH71 & X <
MND reactorol ¢ &7 Walo] w& -In((Cs-Ct)/Cs) th A7t t
2 ZASte] 71 2717F K.l AAdS @& 28 Zojd.

1o A Zo] ZFFHE HASH ALt AAAHEAT (K)o #h= ¥l
WE B AEe]l A9 GD reactor®t MND reactoroll A Kra:® 242} 0.28 hr ',
250 hr'e] gh& JeEr e
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6.0
————GD (airflow 1.0 L/min)
s0 v s | MND (airflow 1.0 L/min)
40 |
- y = 0.0382x - 0.1972
S R? = 0.9469
Q30
(72}
=2
=
20 T B
P =TT y=0.0042x + 01907
- -7 R% = 0.9655
0.0 . L L L L L L L
0 50 100 150 200 250 300 350 400
Time (min)

Fig. 15. Comparison of oxygen-mass transfer coefficient(Kr.) between

GD and MND reactors in tap water.

6.0
————GD (airflow 1.0 L/min)
50 | |------- MND (airflow 1.0 L/min)
R y=0.0172 x + 0.2485
4.0 9
my R =0.9403
Q
Q30 |
[
L
£
20 |
y=0.0030 x + 0.0473
R?=0.9678 /
10 | T
00 Rl I I I I I I
0 50 100 150 200 250 300 350 400

Time (min)

Fig. 16. Comparison of oxygen-mass transfer coefficient(Ki,.) between

GD and MND reactors in effluent of primary clarifier.

51



[
[N
!
i
)
+
>~
5

S
o2
ot
filo
=
R
s
N
)
o3
of
ko
e
[-‘O
D)
of
Lo
ol
=
s
rlo

K., (T) = K,,(20) x 672" (35)

o] 714, K(T) : TCAA 9 24 o] EASF (hr)
Kra(20) : 20Col A1 9] 2k o] 5 A (hrh)
g : AdurzE o g 1,024

—_
(

F AAA FEFFolA GD reactort MND reactor?] -In((Cs-Ct)/Cs) ©

t2 Z=Aste] 712 77F Kl Ads 2 agzon. 37
1.0 L/mino = ARA% 12 JAA FEFolA4 229 & 193 %+
JEH 2 BASe] Alakd Kp, 2 GD reactor ¥ MND reactorol A Z+7}
0.15 hr ', 0.91 hr '¢] & enhdh

ARG AT(K)e F A9 A dFS x9S A FA F
A Gl FaFe 7= AHe] wolo] gholr. A AlAgo] 9o
¥ F7NE FYE o, MNAY dEdE F Jdve FEREHLS 7|E7F o}
ALZ ZF718e, wabd gdukzow 77 Zpolx W F A -Ku]H v}

2ot WMetn e Ki, g0l S7M8tha # 4 9lth Ashley™ & 7]¥9] 2

A7 FAREE Ki, ghol g4 @b A7ARE musha 9o
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X,

MRS U] WSIAIRRY ARG S the A3 o] ekl S o,

N=K,;,(20) < C,(20) <X V (36)
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o714, N : Z=FeAe] St g A48 (gOx/hr)
Kia(20) : 20C oM e B A7 (hr')
Cs(20) : 20T oMo E3} Ak

V: ¥z §$584%F (m)

el AAGF AE olgste] FFEFE MY g FS AEsoH,

A

Aol A &HE GD reactor®t MND reactoroll A AFAgsHEHS 102 g

Ov/hr, 924 g Oyhrel &= YetdA o, 12 JA-A FE59 AbAaga

< 054 g Oyhre} 322 g Oyhré] @<= Uetdol ¢ 12 JdA f&
o AU

25 MND reactoroll A @A 7HE Abax g ko] 2 AS &

(3) &¥da2HdgE (VOTR)

289S g AAHIFEE(VOTR ; Volumetric oxygen

P 5] As obelel A& olgakurh

VOTR = Kia X Cs (37)

o714, VOTR : A&2d9E (kg/m’ - hr)
Cs 1 20C oMo *3 A% = (mg/L)
GD reactor?} MND reactor®] VOTR #2 At A=olA z}z} 257 kg/
m - hrel 2290 kg/m' - hr, 12 JAHA FEF9 4% GD reactorel A
VOTR #& 1.34 kg/m' - hr& WE% AL MND reactor® VOTR #2 804
kg/m' - hr g5 123 HAA FE5F EF MND reactor®] VOTR #kol =
A dERTE A AREEE Kragtel 7127F A" & 5 F @S YEd e

o PN
AE &+

=24 VOTR €A MND reactor®d 7-$o] doiM= F7tsl= A
Aot
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Table 12. Comparison of oxygen mass transfer efficiency between GD

and MND reactors in Effluent of primary clarifier

Raw water Kiaco N VOTR
(hr') (g Oyhr) (kg/m’ * 1)
GD reactor 0.28 1.02 2.57
Tap
water
MND reactor 2.50 9.24 22.90
Effluent of GD reactor 0.15 0.4 1.34
primary
clarifier MND reactor 0.91 3.22 8.04
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THA -5 AAlste] Lab scale BF§
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Ao antifoam agent® FA7MHS W RE F7] e =)o gl
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Table 13. Characteristics on effluent of primary clarifier

Items Units Average value
DO mg/L 0.31
CODc; mg/L 138
MLVSS/MLSS = 0.87
Temperature C 216
pH - 6.94
ORP mV 17

g AEey $YsA4 A

(1) FESIFTNBEL] AUAAF 53
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s
N
BN

56



W A=Y Ass dotrr] & FHQFGHAAEY A EYMAF (Y=
sHATh TEHFSUAAE AMATE A7) S 045 me] GF/C o4&
o] g3ste] o3t 1x HAA FEFFE AFE 3o PAES 10:1(V:V)9]
v g2 Z3e A AEwSsEEs AT A e Ui A
A3} n A Efo] whS-of o3t @ A= XkEtr] 1@l thiourea 20 mg/LE ¥
ofF F, 5% ok EFaAdY?. TCODS SCODE ZA 37 98] 44
s 3 Aog ANgE AMAsReH, COD FHA GF/C AAE ]
g3t et & Aol Aottt oHE {FUIEHFHS BT vAEFeR
7Fgstel &= TCOD(Total COD)®F SCOD(Soluble COD)® zfo]&
BCOD(Biomass COD)E& At=3std o™, Yu= ABCOD$ ASCODS H| &2
Al 4ksE A ok
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U Table 149k Fig. 179 &S A= AT w3 43 235
UER AT Yus Z2efZel yetd Ao 7lerlE Este] 72 ¢ e
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7} 047492 e
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Table 14. Variation

of COD for the estimation of Yy in bioreactor

Time TCOD SCOD BCOD
(min) (mg/L) (mg/L) (mg/L)
0 138 38 100
30 136 36 100
60 133 28 105
90 133 23 110
120 131 22 109
150 129 19 110
180 127 18 109
240 124 16 108

120
15 |
\\‘\\\ y = -0.4749 x + 118.2474
_ Mo VR, W R% = 0.8564
3 o
£ o5 | el
[=] S
o “ael
o \\\
o -
100 | -
95 |
90 ' : ' ' '
10 15 20 25 30 35 40

SCOD (mg/L)
Fig. 17. Measurement of Yield coefficient for heterotrophic biomass by

effluent of primary clarifier.
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(2) F2=HHE A

FEQYu AR H2HFLOURS S487] 98 824 4z

el GD reactor ¥ MND reactoroll A 4FA7F 2 std o 74 43 13}

FAA FEFE FARAL HRA PBRE YA N oo FE
§ E7) AFE Fol J1E Wz ol VAR HAHNAS 4o 9L
WA Bad ¥ §E2Y B3 AASgoH, 14 A4 555 FY F

F7HA 1 714 FaekA skt WA sFTAe] Alte] ©E DO A4
< Fig. 183} Fig. 199 vebuidct.

GD reactor ¥ MND reactoroll Al EZ3AZ1 12 HAA FEFE FY
IES-2 U9 &34k Aae 4 2715 % 3.82 mg/lL, 482 mg/LolA ¢F 20
FFAT FAE Holurt ol ZAaAZE el Huh o] W GD
reactor ¥ MND reactor®] FA42 y = a*exp™(~b*x)2] FeE|=Z e}
agk< Zt7} 35634, 5.8632, bat= 0.0294, 0.0465= v}EFSL

us

4.0
34

30

Je | y = 356347 exp(-0.02 84%x)

DO (mg.IL)
[ou]
[mm]

0a

0.0

0 20 40 &0 80 100
Time (min)

Fig. 18. Curve of DO concentrations in GD reactor by

effluent of primary clarifier.
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Fig. 19. Curve of DO concentrations in MND reactor by effluent of

primary clarifier.
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Fig. 21. Oxygen uptake rate in MND reactor by

effluent of primary clarifier.
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Fig. 20. Oxygen uptake rate in GD reactor by
effluent of primary clarifier.
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Fig. 22. Comparison of oxygen uptake rate between GD and MND

reactors in effluent of primary clarifier.
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Table 15. Results of and DO concentrations and oxygen uptake rate

between GD and MND reactors in effluent of primary clarifier

Time DO concentrations Oxygen uptake rates
(i) (mg/L) (mg Oo/L-hr)
GD reactor | MND reactor | GD reactor | MND reactor

0 3.82 5.96 - -
5 3.23 4.82 7.08 13.68
10 2.71 3.63 6.24 14.28
15 2.17 2.54 6.48 13.08
20 1.84 1.86 3.96 8.16
25 1.57 1.43 3.24 5.16
30 1.42 1.27 1.80 1.92
35 1.31 1.13 1.32 1.68
40 1.11 0.94 2.40 2.28
45 0.94 0.86 2.04 0.96
50 0.83 0.71 1.32 1.80
55 0.77 0.66 0.72 0.60
60 0.64 0.62 1.56 0.48
65 0.61 0.54 0.36 0.96
70 0.53 0.47 0.96 0.84
75 0.44 0.41 1.08 0.72
80 0.37 0.33 0.84 0.96
85 0.30 0.28 0.84 0.60
90 0.26 0.23 0.48 0.60
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(3) FELAITAEY HAYuZE F3

TEHEIGABE  HANA G E (a2 R0l &SI MAEAA
(biomass growth) &-& 7] 2 o] & (substrate utilization)¥}¢] A= v A &9
HAHmetabolism)E &3 AAEE COD7F M2  Alxzel 34 (the
synthesis of new cells)¥} 2408 &2 SHE & U=

3J+= respiration®l] A&
drh &G AR Ao nAgGE e £38] day '2 UERALH

Viw +V,

ml

TS (38)

ml

1
Kms(l_fcv R YH) . OURm e 24 o

o714, f, = €28 A 29 COD/VSS ratio(=1.48 mg COD/mg VSS)
Yu = 259YTAE AEAZEAF(day )
OUR, = 271389 OUR( mg O2/L-hr)
Xy = 1AE MLVSS 5% (mg VSS/L)

N

fav = the active fraction of the MLVSS(=1.48 mg COD/mg VSS)
Vyw = #H9 F3(L)
Vi = mixed ligore] F3](L)

714 Kmsg FA7] 1= Yu, MLVSS, fo, fool #tol 2

ko
ol
ui

fCVy 94’ fav%}\—'\% Ekamam)g] ?i“—TLoﬂglé} OE]}?J'Z‘}?J %}\—?l 14834‘ 04&

A3t
al, MLVSS+= 3,000 mg/L, %271 W OURS 29 5 15%3te] A e
27k AL gek .

Hmac.H = Kms X YH (39)

AZIA,  pmacn = THIYFIE=S] AP dE(mg active VSS/ active AVSS-d)

4 (mg COD utilized/mg active VSS-day)

Yu = 254 ABE AZAAAF(day )
Lmex e H 7] A 0] 88 (maximum readily biodegradable substrate utilization
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rate, Kns)?t TG0 AE AHAIG (Yol vldstez 2 (39l 9siA u
macire AHESFATH

t}S Table 162 GD reactor?t MND reactorE ©|-&3F nAEAZ 5
g Ao B AHRE GehAT Kanedl 2% GD reactoroll A 3.41 day .
MND reactorl Al 7.07 day '= YEFFOM pans AAE A7 27 162
day ', 3.36 day 'S 1}ERIO] U}O]ﬂi‘%i‘ﬂ% M7V AE o] &3 Kol 5
7h7F M=o AFnol R &S TUMAA THolEE H AEANNE =& &
e Hol= FoF T

Table 16. Kinetic parameters of biomass growth between GD and MND

reactors in effluent of primary clarifier

Kinetic parameters Units GD reactor MND reactor
Yu 0.4749 0.4749
OUR mg Oy/L/hr 0.2911 0.3223
Kuns day ' 341 7.07
Hmaxi day 1.62 3.36

7 AREe Rl 54, VAR FF D #42A 0 9T W

A s, oleld 574
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_\*g

AR Mol Aol ol
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Abstract

A Study on Kinetic Parameters for Biomass Growth by
Variations of Oxygen Transfer Coefficient in the Bioreactor

by
Han, Young-Rip

Dept. of Environmental Engineering
Graduate School of Dong-A University

Busan, Korea

The objectives of this research are to evaluate and compare the oxygen
transfer coefficients(Kr,) in both a general diffuser and a micro—nano
bubbles diffuser for effective operation in sewage treatment plants, and to
understand the effect on microbial kinetic parameters of biomass growth for
optimal Dbiological treatment in sewage treatment plants when the
micro—nano bubbles diffuser is applied.

Oxygen transfer coefficients(Kr.) of tap water and effluent of primary
clarifier were determined. Air flow in both the general diffuser and
micro—nano bubbles diffuser was set at 1 L/min, and the saturation oxygen
concentrations in the tap water for the general diffuser and micro—nano
bubbles diffuser with constant inflow were 7.8 mg/L and 9.6 mg/L,
respectively. The oxygen transfer coefficients of the tap water for the
general diffuser and micro—nano bubbles diffuser were found to be 0.28 hr!
and 2.50 hrfl, respectively. While, the saturation oxygen concentrations in the
effluent of the primary clarifier for the general diffuser and micro—nano
bubbles diffuser with constant inflow were 44 mg/L and 6.8 mg/L,

respectively. The oxygen transfer coefficients of the effluent of the primary
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clarifier for the general diffuser and micro—nano bubbles diffuser were found
be to 0.15 hr ' and 0.91 hr', respectively.

In order to figure out Kkinetic parameters of biomass growth for the
general diffuser and micro-nano bubbles diffuser, oxygen uptake
rates(OURs) in the saturated effluent of the primary clarifier were measured
with the general diffuser and micro—nano bubbles diffuser. The OURs of in
the saturated effluent of the primary clarifier with the general diffuser and
micro—nano bubbles diffuser were 0.0294 mg O«/L-hr and 0.0465 mg O./L-hr,
respectively.

The higher micro—nano bubbles diffuser’'s oxygen transfer coefficient
increases the OURs. In addition, the maximum readily biodegradable
substrate utilization rates(Kns) for the general diffuser and micro—nano
bubbles diffuser were 3.41 mg COD utilized/mg active VSS-day and 7.07 mg
COD utilized/mg active VSS-day, respectively. The maximum specific
biomass growth rates for heterotrophic biomass(imax) were calculated by
both values of yield for heterotrophic biomass(Yy) and the maximum readily
biodegradable substrate utilization rates(Kms). The values of jmax for the
general diffuser and micro-nano bubbles diffuser were 1.62 day ' and 3.36
day !, respectively.

The reported results show that the micro—nano bubbles diffuser increased
air-liquid contact area. This method could remove dissolved organic matters

and nutrients efficiently and effectively.
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