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=39 HenryH Fo] WETH FFox 2L A& Fox dFE o
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O3 + H:0 — HOs" + OH
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HOg + HO2 — H202 + Oq2

HO- + HOo — H20O + 09
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HO- + HO- — H20z (8)

o] ArkSol A WA HE hydroxy radical(OH-)-& Table 33 #o] o.F& £
AR T =& Abstdd 9l E 7Ex L vk 3 hydroxyperoxy radical 2
ZRt}h o3k AbgA|olut o] AL OH radicalS WA st webd oF9

Hik AbstE 2 o Ak Afuksd o & Eefol ol A= free

radical OH % HO,9] ®+gof o]sit}

Table 2. Redox potential of oxidants.

Reactions, 25T Volt
Fo + 2¢ — 2F 2.87
OH + H" + ¢ — H0 2.85
O3 + 2H" + 2¢” — Oz + H20 2.07
Hy0, + 2H" + 2e¢ — 2H:0 1.77
MnOs + 4H" + 3e” — MnO: + 2H0 1.69
2HCIO + 2H" + 2e¢ — Clo + 2H:20 1.63
HOz + H™ + e — H0q 1.50
O, + 4H" + e~ — 2H20 1.23
OH + e — OH 2.02
O3 + H.O + 26 — 02 + 20H 1.24
ClO" + HzO0 + 2¢ — CI' + 20H 0.89
HO2 + Hz0 + 2¢ — 30H" 0.88
MnOs + 2H:0 + 2e¢ — MnOz + 40H" 0.60
Oy + 2H:0 + 4e” — 40H" 0.40
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Fig. 7. Direct and indirect reactions between ozone and organic matter.
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Table 3. Effect of pH on half-life of ozone in water.

Half-life (min)
pH
Stumm, 14.6C Hoigne and Bader, 25T

4.0 - 350
6.0 - 50
76 41 -
8.0 - 33.3
85 11 -
9.9 7 -
9.2 4 -
9.7 B -
10.0 i 0.33
104 0.5 -

Table 4. Effect of temperature on half-life of ozone in water.

Temperature (C) Half-life (min)
15 30
20 20
25 15
30 12
35 3
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Table 5. Analytical methods of ozone concentration™.
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Fig. 9. Membrane processes for liquid separation.
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Table 6. Classification of MF membrane materials and properties.
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Table 8. Comparison of properties amount RO, UF and MF membrane.

Item MF UF RO
Porous Porous Nonporous
Membrane (0.1~10 gm) (10 A~0.1 m) asymmetric or
1sotrpic asymmetric composite
Pore size 0.01~10 m 0.002~0.05 pm 5~10,000 A
Sieving Diffusion law
mechanism Sieving and (The solutes
Transfer . .
) (The solutes preferential migrate by
mechanism . . . .
migrate by adsorption diffusion
convection) mechanism)
Law governing )
Darcy’s law Darcy’s law Fick’'s law
transfer
) ) ) Solution with
Type of solution Solution with 4 Ions, small
) ) collids and/or
treated solid particles molecules
macromolecules
Permeability 10~100 7 Ao 0.01
; 1 m”/(m”-bar-d) ;
treated m*/(m*bar-d) m*/(m*bar-d)
Pressure applied 1 bar 1~5 bars 20~80 bars
- 1~10 45~75

pH
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Table 13. Reuse water quality standards.

TE O FAARsEs  Ares 2785 | AR ALES

R 4a 102 mg/L ©]7d] 0.2 mg/L ©l7| 02 mg/L ©]% |02 mg/L ©|%
(43) d A d A d A d A
o] g7} B | o] 27t B | o] &AL B | o] &AI EE
o] g =74 of | & =7A] of | IS =7 A of | HE =74 of
ygk A uzgk A usk A uzgk A
- 2 NTUE 99X |2 NTUE ¥4 12 NTUE ¥4 |2 NTUE ¥X
o oty A oty A ofy g A oy A
BOD 10 mg/LE w4l 110 mg/L=S w4 110 mg/LE w4 110 mg/LE YA

kR N AR L A LR LG

A ol A YR ol A | A ol A | U ofa A

pH 58~85 53~85 58~85 58~85
g | 0EE ¥A o} ) ) 0% W7 of
T e g A
CODM 20 mg/LE 9|20 mg/LE ¥ |20 mg/LE ¥4 |20 mg/LE
TR o® A (A el A o E® A A ol A
a4 o] 5
il a7ENR TE

D ARt YE BEd AR
2) FAESF el AR FHow MRy
3 WAZAY olele. A4 AYHAEAL A8

B
4) BOD¢} &5, &3

LXK

1} CODMno.z: 9ln

o
oX,
S
o
lo,
>
=5
fru
it
4 "
%2,
o

o] o
HA &
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Table 14. Recommended water reuse criteria for reclaimed water usage.

3= Ao | 2AET | AT | A5 | FHET | THET
pH 5.8~85 5.8~85 58~85 5.8~85 6.0~85 6.5~85
SS(mg/L) 6] sk 100] &k
BOD(mg/L) 100] 3} 100 3} 1003} 3o]&t 8o s} 6] st
COD(mg/L) 200] &} 200] 3}
DO(mg/L) 2014 201 2014
g = (NTU) 20] 3} 20] 3} 10¢] &}
T Aa(mg/L) | 020]% -
HA BaARE | BRGNS | BAGARE | BAGARS
e (%) 20°] 3t 20°] & 40°] 3t 10°] 3t
B B A% | AL
Cl (mg/L) 25001 3} 200] 3}
T-N(mg/L) 100¢] 3} 100¢] 3}
T-P(mg/L) 10]3} 1o]3t
Al(mg/L) 5013}
As(mg/L) 0.06°]3}F
B-total(mg/L) 0.070]3}
Cd(mg/L) 0.01°]3}
Cr'(mg/L) 0.05013F
Co(mg/L) 0.05°]3}F
Cu(mg/L) 0.20]3}
Pb(mg/L) 0.1°]3}
Li(mg/L) 2.50] 8
Mn (mg/L) 0.2¢] &}
Hg(mg/L) 0.001¢] 3}
Ni(mg/L) 0.2¢] &}
Se(mg/L) 0.020] 3}
Zn(mg/L) 20] 3}
ABS(mg/L) 0.5°] 3}
CN(mg/L) =
PGB(mg/L) B
R 2% | BdE | 100008 | BHE | 200018 1,000 g
(7H/100m€) == == ’ == ,
L Aa-Ax-E4, FA2 334 W7 Ags S2d0E 4559 o9 FA13 S0 A&
2. A%, 2SS, FY EL FZI9 ol FARE SRR AFEHE A9 H4
3. atde AH}el] W FAE5 FHF L AT 4A, WHAl, Bxo] 5 dAadeld #F T
4. 794 5 AA AH HEF e A5l Ae
5. EEARE BALFE o] &t ASo Hg WAl e 5L FaA) ¥E sl 4
6. A4 WAEFR o] gt Aol HE 0d = Y45 TS, RdHES T2 Fax9)
do] A4
792 2EdE F9odwt HE
8. BEAE Y HFFFAVIEY o] ASH(12€9~3¥9)l= T-N 60mg/ ¢, T-P 8mg/ ¢ & &
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Table 15. Water quality range of domestic sewage reuse water to U.S.A.
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Table 16. Redefinition of legal standard of reuse water quality.
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Table 17. Summary of essential water option guideline and regulation

standard of

water reuse area.

it ey S| . A5
HE/AS (CF%;{(;%M) Ert/inomn| A9 | BODs | (10 | oo | 00 S| PH )
So%t?(\lif(;ﬁs) < <m0 |- || <« | - - - -
obe] z1} <1 - - - 1 - - 45~9 | -
Az Lo} - 22 - | - 2 - - - -
AT 50 - - 10 - 10 - - -
EC bathing 100(g) 500(g) 2(g)
water 2000(m) | 10000m) | . 1(m) B A I
step o <1,000 - /| 1A - - - - -
gredm | U2 1% - R I - -
=d(g) 100(g) 500(g) - | 20(g) | 1~2(m)| 30 |80~120| 6~9 | -
B (m) 10 10 - |10 5 - - 6~9 | -
o] et - 22050%) | - | 15 - 15 05 - 05
o] ere] of - 12(80%) - - - - - - -
ouk 11A <200 100 - 15 - 15 - 6~9 | -
Su 11B <1,000 - -2 - 30 - 6~9 | -
ol = ] 7} 0(g) . - - =~ - - - 1
2299l - 22 - 110 2 3 - |65~84| -
B A}2= (m) 7 - - 5 3 - - - -
L RRE - - <130 - 30 7 |65~85| -
UAE - <100 - ] <10 - <10 - - -
EES Ba_thig 100(g) 500(g) ) ) 2(g) ) 0120 | 60 X
Water criteria 2000 10,000(m) 1(m)
US EPA(g) *‘Ef%lff Ho% - ST 2 - - 6~9 | 1
WHO 100(g) ) ) ) ) ) ) ) )
EARD - 200(m)
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Table 18. Application to secure an instream flow using the reclaimed

water of larce WWTP(forced circulation).

T I
2001 FF A7) Ajle] dstow WpE AHES 5
Mo | e Fele] &5 Facl wHA dFH] fALF Fn,
2002 129 5
< - etA e Al (A Al A
F g |~ Q=37500 md - BOD, SS 3~5 mg/L% #¢]
A S - W49 m x 1329 m x HLI3 m x 2%
Tel. savg
:Q]_E_ o T
mop |~ 7% D=600~900 mm, ¢4 L=126 km
ST - AA g AN M Fe wE el BAxF dA, AuA
RN
CSAARAGT FRE P P AW FAEFIFRAY
(199%)°1 A F 3402 H5she] FF b Wekd 23 15
A el A 5g ol gste Wt & d4AFE Aol gate
e peton 2y
A A2 AA W Fol wE spel FAEF WA, v A B9
A
=
A |- AL d AYFOIE AU - 3
| - Q=100,000 m%/d - BOD, SS 2~5 mg/LZ A
g - e
Wt | - #74 D=700 mm, 917 L=7.7 km
A3t sk S sl e e ZarIAl ek o e
Ae | 71 81812008 =) AeekR 24 St el ojstel shAie
% BFAA 80,000 mY/del HEFE MFEEgN FERRE
Tor ARt fFA8FE Tk WS
o
A A dRARg ARFOIE dFALE B
| - Q=100,000 m%/d - BOD, SS 5 mg/LZ A g
A
ol | - A7 D=900 mm, 9% 1=10.2 km
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Table 19. Application to secure an instream flow using the reclaimed
water of large WWTP and neighborhood water resources

(forced circulation).

TR W&
FaAls T AdE AAGA95) B rd SR
AFE(2000) 5& FSl s A F el SRS A, sk 2
Ao & RFT R AFAAE R b s A gl 118 ke
T REs paAdte] ARelA st
- Al B e B Aol mE AvA =iz 24
0 - sk g AeAAY A B et pde T
o
"zl"
2 et A e AR (Ake Al A
oz | ~ Q43200 m’/d - BOD, SS 8~15 mg/L% # ¢
ooy — W49 m x 1329 m x H1L93 m x 2%
aw | BNE RS
mop |~ Q743,200 m’/d
CY L Erne
- 47 D=700 mm, 9% L=11.8 km
HT AR E A shder U= 283 o SR
e | wete] HE Foly, A &8 VT o R B, IAe-dE, A
gAE aeste] FFFF 120000 mY/dE At AL
. - AAYG A OIS A ¢ dH)
T - Q=120,000 m’/d
2 lex | TRANE
AT - FacleE(pH) 1 65~85
g | - BEEH A2aTFBOD) : 5 me/Lold
H—LO} - B5E22(SS) 1 10 mg/L ©] 3}t
e - 8 A"DO) 1 5 mg/L o
- ZH22(T-N) : 10 mg/L ©]s}
- Z9(T-P) : 1 mg/L ©]3&}
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Table 20. Application to secure an instream flow using the reclaimed

water of small WWTP (gravity flow).

T 98

19004 S ol e AAE sk AR, A 29
Ao | 7 MENT o2 BPARAA YuRAe QHo Abg)

A
=

X
2
=

QA Ad 28

74+ o3 (Micro process)
@ 2,000 my/d

1WA 1500 m?

| @ A9ETH o AT

A4 7,000 HA/d

rQ o 4z N 24

rO L ol X,
op ‘

N

4

o -

oZ ft o 4o

A ANAE B ARl AR SeAe g 14, A5
Tigoma 489 AN 41 % FATT AT A9
A2 A7 AAFE =R WAL Ad, 27 A

3 AxA8e F9%

t
2 48 g
2

ool
20l

Table 21. Application for urban streamlet (forced circulation).

T 98

- HHA SFEAF Aol AAAHS A g Fe] 600,000
m’/del F¥H aEA ] HFE QAT st A5 )
e | wA T FA R ?TE S5 BFsa, 9x Yo A

We] A o AAYHAE FAT F YRF deAHsE T

(RIS

- Q=45,00 o mg/d - BOD, SS 5 mg/L °o|3t& ]z

oZ g 4o
O M ot X
op
&
rJ
oRg

=800 mm, ¥ L=75 km
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Table 22. Application to secure a stream maintenance flow using the

on-site treatment plant.
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=] A g Ao] 8 AP BE, &5 aFAQl o]g A
gk H ol EARA S A& %
2ol AfE oY, =AstFE FABANA AR H o
shed A sAAE F2 AVE ABARZ oA HTH

oA Hxo Aol FAYY BHE, &5 GHARl ol& W AR
o H 4ol EAbAE et Aol ZE Fdo] 9tk 194
7] st A Al "ol AFH old, =AlsteE A NA AR E] S
=, 34 5 A4AE FE 4785 AEAR AR

oA HExE Ao]gS AL e 19261 ofglxzuFo] = Grand
Canyon National Park@A], &9 oA AR E= Q55 AHgste] 544
shga el AA & o] degg, WAEF o AREE ST

QA AT AFEAdAE B B SEAYSE 4RSS o 8@
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_I_4

JAME TYFA el 3 ol AEH ML BHoz FAo

saHon, 595E 9U7A O]%O] B2 Al-d = ¥t 30,000 Gal/d

o shrAeeE £AN FFAES, A%, B4 L AdgoR AFgE
@ 9%

Ao AE 19799 AR FEAUS Aol & Aol dAE B
AL e F2 wA gRed £ 3385

L1980 690 127449 o] §HE AN THYEL W
o} FEFE Ailw Frjste] sh5H S
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(4) B ¢RAADAAN Aol & st 45

B o B welol Aot A o FEsh hEE o] AYHOE ¥
g wolel, 239, o|xnedAn 2o AGI Age] we FE FA A

2o 2 %7be rustE AAH ole@ tetelAe B Aol gL WK
olgtz @ % Atk 7 ek W Aol FEol A HTnY et @
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NEWaterE 245000 m’/d &3 8= 2ol & #rh NEWatert 4% UV
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Table 23. Monthly average concentration of treated water in second

settling tank.

Concentrations

Parameters | Units
April May June July Aug. Sept.

BODs mg/L 54 2.6 4.6 3.9 3.5 3.7

CODwmn mg/L | 16.3 125 145 12.3 114 13.1

SS mg/L 2.6 2.0 3.4 3.7 2.7 3.0

T-N mg/L | 33.964 | 30.853 | 14.597 | 13.665 | 16.204 | 14.480

T-P mg/L | 0325 | 0468 | 1.189 | 0.721 0.847 | 1.034
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Fig. 12. Schematic of MNB-OZ and MF system.
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Fig. 13. Photographs of microfilter.

Table 24. Specifications of microfilter.

Items Units Specifications
Model - TuBRaid”-30
Material - PVDF (Polyvinylidine Fluoride)
Pore size nm 20~40
Surface area m’ 0.2
Capability L/min 20~25
Dimension mm 300L x 500
Casing material - acrylic
Surface type - hydrophilic
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Table 25. Specifications of ozone generator.

Items Units Specifications
Model - GEOG-5G
Voltage, Frequency V, Hz AC 220, 60
Electric power consumption AW 30
Maximum ozone dose g/hr 5
Airflow rate LPM 3(90+3%)
Air pressure kg/cm® 0.1~0.7
Size mm 550W x 550L x 700H
Weight kg 50
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Table 26. Analytical methods.

Parameters Units Methods and Apparatus
pH - pH meter (model YSI 601-10 FT)
Tempetature T DO meter (model YSI 550A)
DO mg/L DO meter (model YSI 550A)
BODs mg/L Winkler-sodium azide method(207C, 5days)
CODwin mg/L KMnO, method
COD¢; mg/L KsCr207 method
TOC mg/L Non-dispersive infrared method
SS mg/L GF/C filter method
T-N mg/L Absorptiometric analysis (model UV-1650PC)
T-P mg/L Absorptiometric analysis (model UV-1650PC)
Color PCU Color meter (model KRK CR-30)
Turbidity NTU Turbidity meter (model HACH 2100P)
Coliforms Counts/mL | Plate-count method

(4) Bdo3 49

ol AR - E QEHFZ WA HFE
st7] fla AholdeS o] &3 whitd] A
hAstel] mE fF B fluxE FAs5len, il &EFSALS electronic
mass—balance(Hansung, model HS2140 electronic mass—balance)& ©|-&3}
of MAZOR ErGHS Atk £F Bes HBS stel o
(membrane fouling)e] F3qH ]9 FHS 54 L 2 ppme NaOCl= <F
FAAS DA

iz WA o= TR e Fdte] AEE(Nuo)ol A
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Table 27. Operating conditions of MNB-OZ-MF experiments.

Items Units Conditions
15
Pressure psi 20
25
Backwashing pressure psi 30
Filtration 1,710

Opteilzt;ng Backwashing sec 60
Drain 30

Recovery % 95~99
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Fig. 14. Ozone concentration by input amount of ozone in MNB-0OZ
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Fig. 19. BODs changes by input amount of ozone in MNB-0OZ system.
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Fig. 20. BOD; removal efficiency by input amount of ozone in MNB-OZ system.
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Fig. 22. SS removal efficiency by input amount of ozone in MNB-OZ system.
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Fig. 24. CODmn removal efficiency by input amount of ozone in MNB-0OZ

system.
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Fig. 25. COD¢r concentration changes by input amount of ozone in
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Fig. 26. COD removal efficiency by input amount of ozone in MNB-OZ system
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(8) FU(T-P)
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Fig. 31. Color changes by input amount of ozone in MNB-OZ system.
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Fig. 33. Turbidity changes by input amount of ozone in MNB-0OZ

system.
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Fig. 34. Turbidity removal efficiency by input amount of ozone in

MNB-0Z system.
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(11) &=

24,900~40,700 71/100mL = MNB-OZ *

T
FAllg £A Vn/EA 4AES, FAE

A

2R Ax A5 g S
g

TE WUEHEH e 60 min 7hsAl FHET 90 min AHA] HAEAEF, 27
45, IAFE5E U5 A Y. LEFTYF 343 g/hre 60 min 7 Al A E
E%Ol 100%, 2&FY = 282 g/hr, 1.82 g/hr o 242} 90 min 7FsA A g

QEL HAEY B Hold s3E Holw Aom & LA 9l
t} Fig. 350 tidd s A @A E HGERl AT

Inolos"” ¢} Broadwater'”& 4% & ¥E7l e wo Ato] 79
dojupx] drprp o= AE o F9] Fxyl Frietd, Aato]l Ao A3
o] Fol A= ‘all-of-none’ ®FE-o] Yojtrtil sFPAIRE E AFol A= o]k
= 29 Burleson 5'"¢] Ao} wpAsiAE AFadE FAHoE L
e Aoz gAHgit} o9 o] B Ade] A#st Ingols'” 5o AT
Ao}l thE o)f= & AFoA HAG oFE VEXE WEY FOoEH, 2
& 71 xHo] nAEo] e E0] gas-liquid film W] HluA #& Fk
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Ozone 3.43 g/hr (Before treatment) | Ozone 3.43 g/hr (After treatment)

Ozone 2.82 g/hr (Before treatment) | Ozone 2.82 g/hr (After treatment)

Ozone 1.82 g/hr (Before treatment) | Ozone 1.82 g/hr (After treatment)

Fig. 35. Colon bacillus medium by input amount of ozone in MNB-0OZ

system.
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4. MFE €3 MNB-0Z Ag 59 A8 EA

FAYS AolgS fdl MNB-OZ Al e £F2FES o] &34
¥ |3 AA A Al AY5AES ZEAT. MNB-OZ A=
S EFUAFEF 1.82 gog/hr 2.82 gOs/hr, 3.43 gOy/hroll A Z+2F 30

90 min A2 & MF#Ho= AAAY stdern, MF 43422 15 psi, 20
psi, 25 psi® FA3Y A2 e Hold(Dead—end) W] o2 43S

onl, £abgs BAE AN GAH glo]l §ELE FES AE FiEe
_]

min, 60 min,

datel e

Table 28. Conditions of MNB-OZ-MF system.

ozone dosage Running time of MNB-0Z system MF pressure
1.82 g Oy/hr 30 min 15 psi
2.82 g Os/hr 60 min 20 psi
3.43g Os/hr 90 min 25 psi

7}. MF o3 & o&E% % Wl

o} Fig. 36~38 o= SEFTYUHE MNB-OZ A|=89] HE+(MF F+945) 2
MF Aibre] e&% s Helglth MF 1999 B s QEFUF
1.82 gOs/hr, 2.82 gOs/hr, 3.43gO0s/hroll A 242y 0.7626 mg/L, 0.8277 m
09145 mg/L= YEwkom, zhzte] e EFdFHE R Zol= UAARE °F 90
min FEo] FHAZF o] F HHAE YHEHHAT. MF A4t HdeE &
S+ 0EFAYE 1.82 gOy/hr, 2.82 gOs/hr, 343 gOy/hrolA 24z 0.2124
mg/L, 0.2564 mg/L, 0.3098 mg/LZ YEIsteH, o= MNB-0OZ A]2~H <]
A g HFstal v o] MF 2 oA vhgo =z Qs Fhastal
A= Aoz FdkE
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Fig. 36. Variations of ozone concentration at MF influent and MF permeate by

14

Time (min)

ozone dosage 1.82 g Ogz/hr.
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Fig. 37. Variations of ozone concentration at MF influent and MF permeate by

Time (min)

ozone dosage 2.82 g Os/hr.
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Fig. 38. Variations of ozone concentration at MF influent and MF permeate by

ozone dosage 3.43 g Os/hr.

MNB-OZ Alz2glel] ] MF 4 54 % vlo]zz vheslBa} 0Fo] 2o 9]
Azkol WA= QS setals] 18] MNB-OZ AlzHe] Aeld el 24 2
% AY5E olgdtel TS B AT 24 BAE AFE ol gl &

A= 15 psi, 20 psi, 25 psiolA 43 Ay F SHAE ZH2E 155 min, 130
min, 100 min &2 YERtoH 30 min 7]+ F4EE 22+ 63.0 LMH, 776 LMH,
785 LMH= et B3k 221 J1dx Ao Fi=d 2 g=fdE

af F3a&o] 60 min ool vt low A7l &S fs dAet e

& o= e
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Fig. 39. Permeate flux as a function of membrane pressure in 2nd-step sewage

secondary effluent.
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Fig. 40. Efficiency of membrane permeability as a function of membrane

pressure in 2nd-step sewage secondary effluent.
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(2) L&FY% 1.82 gOy/hrdl] @& MF 345

MNB-OZ Al2=§1] 30 min 24 ©]F MF &4 5
th A8k 15, 20, 25 psidlA g Ay F HAIRNS 242 285 min, 205
min, 140 min 22 HFNo™, 30 min 7|F FHZY2E 111.0 LMH, 136.2
LMH, 1700 LMH= Yepstt}h =3 FRE&°] 45 275929 50% ot}
= AR 15 psi, 20 psi, 25 psiol A ZHzE 80, 65, 55 min & & vFERRE
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O0zone 1.82 g/hr, 25 psi

200

[y
(2]
o

Flux (LMH)

120

80

40

Time (min)

Fig. 41. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 30 min at ozone dosage of 1.82 g/hr.
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Fig. 42. Efficiency of membrane permeability as a function of MF pressures
in a MNB-OZ system after 30 min at ozone dosage of 1.82 g/hr.
MNB-OZ Al2=§l°] 60 min =4 ©]§ MF 3 545 Fig. 43~44°l Jehdd
ol 1= 15 psi, 20 psi, 25 psiolAl &dg A7 F AR ZH7) 315 min,
220 min, 170 min S *HEHAeH, 30 min 7l& FHEFHAEE 1282 LMH,
1556 LMH, 172.7 LMH= Yelstth E£3 F3a&0] 45 2715429 50% ©

s HE 1A 15 psi, 20 psi, 25 psiolAl 242 85 min, 70 min, 60 min®

= e
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Fig. 43. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 60 min at ozone dosage of 1.82 g/hr.
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Fig. 44. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 60 min at ozone dosage of 1.82 g/hr.
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MNB-OZ A|Z=¥1€] 90 min &% o]F MF &% 545 Fig. 45~46° HeRHS]
otk -&AgE 15 psi, 20 psi, 25 psiol A E43g Ax}
240 min, 170 min &2 *HFeH 30 min 7l& FAEEHAE 1440 LMH,
183.1 LMH, 2061 LMH= Yepygth =3 Fa
31 He -AIZF 15 psi, 20 psi, 25 psiolA 22 115 min, 8 min, 60 min®
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Fig. 45. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 90 min at ozone dosage of 1.82 g/hr.
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Fig. 46. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 90 min at ozone dosage of 1.82 g/hr.
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(3) LEFYF 2.82 gOy/hrdl] @& MF 345

QEFUY 282 gOvhrZ 24 AAE o]&ste] MNB-OZ AlZ=¥le] 30
min £ °o]F MF &4 54 Fig. 47~489 ek 4= 15 psi, 20
psi, 25 psiollA] 4% Ay F SHAES 742} 330 min, 225 min, 156 min ©.&
SAEN e 30 min 7% FHEE2E 1142 LMH, 1380 LMH, 1374 LMH=Z
UERgTE B R g A 271EH2] 50% ol e XA 15

psi, 20 psi, 25 psiolA Z+2Z; 115 min, 70 min, 50 min &% YERST]

o T
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Fig. 47. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 30 min at ozone dosage of 2.82 g/hr.

114



10 I%

M Ozone 2.82 g/hr, 15 psi
A Ozone 2.82 g/hr, 20 psi | |
O Ozone 2.82 g/hr. 25 psi

0.8

S

0 30 60 90 120 150 180 210 240 270 300 330 360

Time (min)

Fig. 48. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 30 min at ozone dosage of 2.82 g/hr.

MNB-OZ Al=€1¢] 60 min &3 °]% MF &% 545 Fig. 49~50°l HeERL
o} 44 15 psi, 20 psi, 25 psiolA =4 A3} F SHAAIZRS ZH7F 355 min,
250 min, 180 min 22 *ZFAeW 30 min 7|+ FHEHAE 137.8 LMH,
1766 LMH, 2089 LMH= uYelstty 3 a0 45 2715929 0% ©l
s HE WA 15 psi, 20 psi, 25 psiolAl ZH2F 90 min, 85 min, 65 min®
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Fig. 49. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 60 min at ozone dosage of 2.82 g/hr.
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Fig. 50. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 60 min at ozone dosage of 2.82 g/hr.
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MNB-OZ A|2=#1¢] 90 min <4 ©]% MF &4 545 Fig. 51~520] YeERA

o} 44 15 psi, 20 psi, 25 psiolA =4 A3}t F SHAAZRS ZH7F 340 min,

240 min, 200 min & FHEASH, 30 min 7|F FIHEE2E 1268 LMH,
1677 LMH, 2085 LMH= epstrh w3 F3a &0 45 2715829 50% ©

sh7F H= AR 15 psi, 20 psi, 25 psiolAl 22 75 min, 75 min, 85 min©
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Fig. 5l. Results of permeate flux as a function of MF pressures in a

MNB-0OZ system after 90 min at ozone dosage of 2.82 g/hr.
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Fig. 52. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 90 min at ozone dosage of 2.82 g/hr.
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(4) LEFYF 343 gOy/hrdl & MF 7445

=
=TFdE 3
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43 gOy/hrz 7g AAFE o83t MNB-OZ Al2=gle] 30
min % °]% MF &% 54 Fig 53~ Jehloleh 443 15 psi, 20
psi, 25 psiollA] 4% Ay F SHAEE 742} 375 min, 275 min, 190 min &2
SAEN e 30 min 7+ FHZE2E 1306 LMH, 1624 LMH, 1727 LMHZ
UERgTE B R g A 271EH2] 50% ol e XA 15
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Fig. 53. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 30 min at ozone dosage of 3.43 g/hr.
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Fig. 54. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 30 min at ozone dosage of 343 g/hr.
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Fig. 55. Results of permeate flux as a function of MF pressures in a

MNB-0Z system after 60 min at ozone dosage of 343 g/hr.
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Fig. 56. Efficiency of membrane permeability as a function of MF pressures

in a MNB-OZ system after 60 min at ozone dosage of 343 g/hr.
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MNB-OZ Al2=§l°] 90 min =4 ©]§ MF 3 545 Fig. 57~58¢] YJehL

.49 15 psi, 20 psi, 25 psiol A =4 A3 F AAIZRS ZF7E 390 min,
305 min, 230 min &2 *HEFeH 30 min 7lF FAEEH2E 15616 LMH,
1823 LMH, 2084 LMH= Yepyith =8 Fo1g ¢ #29] 50% °]
sH7F e SAAZEE 15 psi, 20 psi, 25 psiolA 242 105 min, 115 min, 8 min
O ek

A Ay eEFYHFY Frtl wE e dAFro] gAs] ey on,
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Fig. 57. Results of permeate flux as a function of MF pressures in a

MNB-0OZ system after 90 min at ozone dosage of 3.43 g/hr.
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Fig. 58. Efficiency of membrane permeability as a function of MF pressures
in a MNB-OZ system after 90 min at ozone dosage of 343 g/hr.
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(1) BODs

MNB-OZ Al2=gl3 MF ol 3] A o] €3k BODs s%+v LEFUF 3.
gOs/hr, 282 gOs/hr, 1.82 gOyhrollX Y BODs &=+ #4723

mg/L, 47 mg/LZ el en 150 mingt Aol Hit BODs 5% 247t
mg/L, 31 mg/L, 35 mg/LZ YERRT) 9o 5474 Altke] sl wE 4
HEe gllen, f71E AAdE & 2471 gl o= yehgth 5=k d 9]
gl A AFETE AT srAEs Aold 4 ATES e R
et 25840 ARSEA o] AsAH MNB-OZ Al=gle] LA 7Hs 245}
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Fig. 59. Variations of BODs concentrations at different input ozone amounts

by MNB-OZ system and MF system.

(2) CODmn

MNB-OZ Alz=€lat ME ojae] dAA gl 23k CODwi s%E EFUE
343 gOshr, 282 gOy/hr, 1.82 gOy/hrol A #+% CODwn =% 27t 123 mg/L,
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122 mg/l, 126 mg/LE viehtom, 4l BT CODy, ¥EE 47 102
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Fig. 60. Variations of CODwvn concentrations at different input ozone amounts

by MNB-OZ system and MF system.
(3) CODCr

MNB-OZ AlZ=€13 MF o3| dAzlelel] &3k CODer s=v 27U 343
gOy/hr, 2.82 gOy/hr, 1.82 gOy/hrolld #<9 CODe, 5%t 2H2t 236 mg/L, 24.7
mg/L, 243 mg/LZ uehstor], i i CODer =% 2H2F 199 mg/L,
216 mg/L, 21.7 mg/L= Yt APA3 e EFS "] e fr1ede =
sk A e gtk

d
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Fig. 61. Variations of CODcr concentrations at different input ozone amounts

by MNB-OZ system and MF system.
(4) T-N

MNB-OZ Al2=gl3 MF of3}e] A Mg ogk T-N 5= 27U 343
gOx/hr, 2.82 gOy/hr, 1.82 gOs/hrolA 9 T-N t

mg/L, 4327 mg/LE2 YERgom, Al Hit T-N FE% 2H7F 3904 me/L,
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Fig. 62. Variations of T-N concentrations at different input ozone amounts

by MNB-OZ system and MF system.

(6) T-P

gOs/hr, 282 gOs/hr, 1.82 gOs/hroll A #94 T-P F%&+= 27} 0621 mg/L, 0.628
mg/L, 0637 mg/L= uYetstew, Adkage] Ayt T-P w5 24 0591 me/L,
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Fig. 63. Variations of T-P concentrations at different input ozone amounts by

MNB-0Z system and MF system.
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Fig. 64. Variations of SS concentrations at different input ozone amounts by

MNB-0Z system and MF system.
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Fig. 65. Variations of color at different input ozone amounts by MNB-OZ
system and MF system.
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Fig. 66. Variations of turbidity at different input ozone amounts by MNB-OZ
system and MF system.
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(ozone injection concentration at 3.43 g/hr)

i=)
T

=
=

Results of MNB-OZ system treatment

MNB-0Z system (3.43 gOs/hr)

Removal
Parameters | Units 0 30 60 90 120 160 900 efﬁ(c;/glcy
min min min min | min min | min
pH - 6.52 6.38 6.36 6.31 6.32 6.26 6.23 -
Temp. T 23.8 259 271.2 285 29.6 30.8 31.9 -
BODs mg/L | 4.60 3.44 2.08 1.62 0.80 0.52 0.20 95.7
SS mg/L 185 9.0 3.5 2.5 2.0 1.5 1.0 94.6
CODwn mg/L 14.0 114 10.2 10.0 10.0 9.6 9.6 314
CODcr mg/L | 350 29.8 29.0 255 23.0 22.0 20.0 42.9
T-N mg/L | 5124 | 4675 | 4634 | 4533 | 4490 | 4.484 | 4.725 7.8
T-P mg/L | 0.731 | 0.667 | 0.662 | 0.647 | 0.641 | 0.631 | 0.621 15.0
Color PCU 174 6.9 3.8 1.8 0.5 0.3 0.1 99.4
Turbidity | NTU 4.02 3.11 251 1.65 1.57 1.17 1.06 73.6
Coliforms Q:;tS/ 40,700 | 500 0 - - - - 100.0
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Results of MNB-0OZ system treatment

(ozone injection concentration at 2.82 g/hr).

MNB-0Z system (2.82 gOs/hr)
Removal

Parameters | Units efficiency
0 30 60 90 120 160 200 (%)

min min min min min min min

pH - 6.78 6.76 | 674 | 6.72 6.7 | 6.77 | 6.77 -

Temp. T 225 241 257 | 272 28.9 31.0 | 330 -

BODs mg/L | 6.82 450 | 2.82 | 2.20 1.84 | 090 | 048 93.0

SS mg/L | 15.0 7.5 6.0 4.5 2.5 15 1.0 93.3

CODwn mg/L | 136 114 10.2 9.6 9.6 9.0 9.0 33.8

CODcr mg/L | 285 26.3 254 | 23.0 21.2 19.2 16.4 42.5

T-N mg/L | 5168 | 4.350 | 4.287 | 4.270 | 4.233 | 4.199 | 4.180 191

T-P mg/L | 0.724 | 0.621 | 0.610 | 0.610 | 0.606 | 0.599 | 0.587 189

Color PCU 187 9.5 5.7 4.4 34 2.0 0.8 95.7

Turbidity | NTU | 3.71 3.04 | 2.09 1.33 1.22 1.18 1.05 71.7

Coliforms 24,900 | 100 100 0 - - - 100.0
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Results of MNB-0OZ system treatment

(ozone injection concentration at 1.82 g/hr).

MNB-0Z system (1.82 gOs/hr)

Removal
Parameters | Units efficiency
0 30 60 90 120 160 200 (%)
min min min min min min min
pH - 6.66 6.62 6.66 6.68 6.71 6.76 6.80 -
Temp. (¢ 26.1 28.2 29.7 30.8 32.1 33.6 34.5 -

BODs mg/L | 6.20 4.84 3.62 2.21 1.28 0.92 0.54 91.3

SS mg/L | 165 9.5 6.0 3.0 2.5 15 1.0 93.9
CODwn mg/L | 11.8 10.8 9.8 9.4 8.8 8.6 8.4 28.8
CODc¢: mg/L | 11.8 10.8 9.8 9.4 8.8 8.6 8.4 28.8

T-N mg/L | 4.642 | 4505 | 4.349 | 4.297 | 4.022 | 3.977 | 3920 156

T-P mg/L | 0.649 | 0.615 | 0.607 | 0588 | 0.573 | 0.567 | 0.558 14.0

Color PCU 178 9.8 5.0 4.3 3.5 3.2 2.3 87.1

Turbidity | NTU 3.18 2.85 2.16 1.44 1.27 1.19 1.13 64.5

Coliforms 20,900 | 100 100 0 - - - 100.0
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ABSTRACT

Study for Reuse of Treated Wastewater by Using Combined

System of Micro—nano Bubbles Ozonation and Microfiltration

by
Kil, Sung-Jae

Dept. of Environmental Engineering
Graduate School, Dong-A University

Busan, Korea

The main objectives of this research are to determine optimal and
economical operation conditions through microfiltration (MF) process prior
to micro-nano bubble ozonization (MNB-0OZ) for reusing of treated
wastewater and to evaluate suitability in reuse of effluent water from the
secondary settling tank.

The effluent water used for this research was not treated with
chlorination in K wastewater treatment plant located in B city. Even if
the MNB-0Z system has 400 L of capacity, 200 L effluent water was
tested in this research. The MNB-0OZ system 1is consisted of the
micro—nano bubble system and ozone generator. To keep water quality
stable and clean, the microfilter system was attached into the MNB-0OZ
system.

For 90 mins of MNB-0OZ system’s operation, removal efficiency
percents of BODs, SS, color, turbidity and coliforms showed 67.7%,
85.5%, 89.7%, 64.2% and 100%, respectively.

Other parameters which are CODy,, CODc, T-N and T-P showed
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lower removal efficiency for 90 mins operation, and removal efficiency
percents of CODwym, COD¢r, T-N and T-P were 9.4%, 27.1%, 17.4% and
15.796, respectively.

To investigate decreasing of a membrane fouling by means of
remaining ozone concentrations and operation properties of the MF
system prior to the MNB-OZ system, the MF system was attached and
operated at lower part of the MNB-OZ system. As a result, the average
ozone concentrations at influent of the MF system were 0.9145 mg/L,
0.8277 mg/L and 0.7626 mg/L at 343 g/hr, 2.82 g/hr and 1.82 g/hr of
input amount of ozone, and the average ozone concentrations at the
effluent of the MF system showed 0.3098 mg/L, 0.2564 mg/L and 0.2124
mg/L at 3.43 g/hr, 2.82 g/hr and 1.82 g/hr of input amount of ozone.
And, the MF system was operated for dead-end type, and it took time
to get the backwashing for the system were 155 mins with 15 psi, 130
mins with 20 psi and 100 mins with 25 psi. For 30 mins operation, the
flux for 15, 20 and 25 psi were 63 LMH, 776 LMH and 785 LMH
respectively.

In the test result using effluent which was from 30 mins operation of
the MNB-OZ system at input amount of ozone 1.82 g/hr, the maximum
operating times at 15, 20 and 25 psi were 285 mins, 205 mins and 140
mins, respectively. For 30 mins, flux for 15, 20 and 25 psi were 111.0
LMH, 136.2 LMH and 132.8 LMH, respectively.

For reuse of effluent water from the secondary tank, the optimal and
economical operation conditions for the system were for 30 mins
operation in the MNB-0OZ, 182 g/hr input amount of ozone in the
MNB-0Z, at 25 psi for 29 mins filtration and for 1 min backwashing in
the MF system. For 300 mins operation with the conditions, the basis
transmission efficiency (J/Jo) was 95.3%, and the water qualities were

fully satisfied with recommended standard for reusing treated water.
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