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o714, oM
ot

= 712 %% (kgOy/hr)

= Ao GAA% (m/hr)
A = 71A-o1A AAR] AEDA (m)

= Ao M MiaFE 7 (kg/m/m)

aER Z)Ae] Ay s st sdsivan Jhgskd o
o R YA E S Rs VA A A Z|2A7]7F Ao A SE W
Aol FAokgitt. 7]-of HEUAHL V|Eo] Avle] wet A 5, 7|29

A717F Al whel g ste] V] xEe] HEUA e AXA drh 71xe 2
719} HZ=w A o] v Table 201 YERH T

3, Table 370 7|23719 54S vehhglon, dut 27w B} vl
oA - YW ES HustH Ak A7IWEe AVE oF 2 m(=2,000 m),
mol AR - ES 01~10 mz violZ 2B HE=HAHo] 20~
2,000, HZEA 7+ 80~8000u] o4l &3S 7HHth

Table 2. Comparison of bubble sizes and contact areas

Bubble sizes Contact areas
Imm @ 100xm 1:10
Imm @ 10mm 1:100
Imm @ 1gm 1: 1,000
Imm : O.1pm 1 : 10,000
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Table 3. Size comparison of conventional bubbles and micro—nano bubbles

Diameter Area Volume Contact grea
Parameters (mm) (i) (i) per unit
bubble size
Ceramic fine
bubbles 2~3 50~113 34~113 15~1
Medium
bubbles 3~4 113~201 113~268 1~0.75
Coarse
bubbles 10 1,256 4,187 0.3
Micromnano |1 16, | 00314~804 | 52%10% ~2.14 |  604~38
bubbles
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3. A5 ALxAA
7b BESH A2AA 71F

At om dAas AAss 714 AxFAEN o A 59 #
7] B dRYokd HAAE ASAIA  nititeE A A nitrate® W 3A )=
2k Ahsh wbgap Hakstol ola] AAdE AbshdEie] A

oM HAFEAZ AgFoer AATtAR

(e}
ANA tr)Zzoz BE A7 gdas) wgow U 4 gl P

o2 12~13%%5 AAstaL vk whebA signtEe] Aol nAde Al
ol olall AAE ¢ Avk AlEAgel o) AANE Hi dE FHL

= Uegu obgsh 2o

ANH,—N  0.125xdX,

dt dt
o714, dNHsN/dt = &2l o g dAaAAE, kg/day
dX/dt = 8438} nAyEe] WAL, kg/day

G ze)A) AzeolA gRUed Hae] AALT COD AALze] H

ANH, — N/dt dX,/dt
— 025X
dBOD,/dt dBOD,/dt

BODs AA&3 F/MH Y rE A4 A2RE drUold Ai: olgfy

o=z xd & 4 vk

dNH, — N (0.125) % (X,)(K,)
7ngD5 = (0.125)(a) — M
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o 7)1, a = yield coefficient, g VSS/g BODs
X4 = degradable fraction of MLVSS
K, = endogenous decay rate, g VSS/g VSS-day
F/M = organic loading rate, kg BODs/kg VSS-day

a(yield cofficient) #t2 AWk o2 06HTF A ¢ow oFRyol A A=
7 BODs AlA#Ze o]&4 FHu vl&2 0.0750]th. F/M vl & 0.1 /day= Al
2HS Fggnd dRYolst 1= AAFY Hl&& 0.018Y Aot
whebA] AEFAe o AATE F Ade A AAFE FY F7IEe] A
2~5%¢l Bapape}.”

Tt A e BODsS dAws=7F 2447 120 mg/L H 30
mg/Let™ =Alskg Ao A AEdA e AAYE die 8~20% A
Lo, AT A5 3 BOD:S Ad4d vEF dRUAH di F
=7 237 2,300 mg/L E 650 mg/L 2t duk =2¢
TFA 8 AAHE AaAALE 7~18 FEol

Y. & A3} (Nitrification)

Nitrosomonas

2NH, + 30, — ENOQ, + 2H,0O + 4H + new cell

Nitrobactor

2N + O — 2NOy  + new cell
dutx oz Aitsl oA FEE= AL nitratee]t. o] & nitriteo] A
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nitrate®= HA&¥ = £=7F vl w=7] wjEolty ojuf HAFsti o] cell
biomassE NVSS(nitifier's volatile suspended solids)®] i, nitrobacter®] Al
X AAELS 002~0.08 g NVSS/g NHz:=Z His i o HAAE 93 o
WAl gk 015 g NVSS/g NHzE Abgateh sbstel Axgdde =3
Ado=w dojx F g2 S ol e} A

NH; +1.830,+ 1.98HCO; —0.98NO; + 0.021 Cs H; NO, + 1.88 H,CO, + 1.04 H, O

0_1.4

Aabst s Sk FEureAdM AdE, 1 g9 dEYod A
stoll & AAT W 433 go AAE iE’_é} 714 go L=
™, 015 go MR A3 <2 008 g9 FIEAT &%

o PN 38)
S & U

oft
oX,
=]
o
_ﬁ

ol Yol 1 mole] ZEAF3E 7] YsfiAd= 2F 175 kecal/mol7F Z &
Ao g Azl Q%= SRTE AAsE 19 specific growthe] 99} 2t}

Ay
My — knd

n

SRT=

= 223} bacteria®] specific growth rate, g new cells/g cells - d

Kua = A3} bacteria ¢ WA & decay rate, g cell decayed/g celll - d

3 A 9k endogenous decay coefficient 35S FAS 4= U= AR
= Monod2]l & o] &3] 85 E SRTE specific growth rate®] d+=2 %

=

=

=] 5 >~
a4 Utk

(i max )N
="K +N

Unmax = 2AFsF] A specific growth rate, g cell produced/g cells « d
K. = Half saturation coefficient, mg/L
N = gEYold Hx9 5%, mg/L
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Ao A G IS FE AAERE WSFoAM ERE, FAE
214 ¢] flocZ7], pH, §&EAE % 55 & F Atk T3 8 G &7 2o
AAkst wkgo pH, 2%, 8&44A 5 B2 8 W=
Aol A pH 7oA Ho Bl dEo] pH 8 oAk Hluske] oF 50% A
T dom, pH 77 pH 8 Alojoll A= nlud AMH] A Hol= Zo
2 Basteich daksl go #$ JdFE pH 7.2~8.0 MM = & Aol
Kolx il pH 7.2 olstol = Hilstgo] A4 ew 2
of g Akt o] AAkst wEgo] dojuir] 93 HATe w=
mg/LZ <# A dow, nitrosomonasol| 13 Akt wkgo] JEgFS 72 A
= GEAALY FEE 1 mg/lolAolal, nitrobacterd] 3+ A3 wH&
of JFS 7HNA ¥ FEE 2 mg/L olFolgtn Hashgch P

Aokl gbgo gk Hd v AES 250 o AA JFS o] o
o ApAEd] o8 RaHgich USEPAY o e ofs
Ao ¥AdFES 03~05 /day o WHAZ &HA I
half-saturation coefficientS® X &t =d], oJu] 10, 15  20°Col A
half-saturation coefficientzt< ZzFzF 0.23, 0.41, 0.740.% vepd 4= ok

Aabstol] @S F= A7) dAE Qo SAHA=H R A3
o SA=Aol el nitrobacter~= Vi WE Ao w dEA vt HAkst
of &S F= SAHEH F free ammonia(FA)$} free nitrous acid(FNA)
of #3F A= FAZ} nitrosomonas®] A3E FE= FE== 10~150 mg/LY

| ¥ A, nitrobacterol AME T =& 01~10 mg/Ld<S

I

o

(Gl
M
[o

Lo A o

st FNAZE nitrobacterd]l 43S v %+ 02~28 mg/Le=
Baskgleh olE FRe pHY R A8 Aom FAS F:E pHY
e 183 49 gga o
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Ammonium¥ FAE X

°1714, TA
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o7
<0

o

A=

23} Denitrification) &

2
Nz, NoO9F NO=

anoxic(anoxic) &4

KR
T

? 94

ot o ¥
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T
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| ol ozl

J

olo

2% %

ﬁo

I3
=l
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Fal whgo] ojupe,
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tHe= &

S

g, A o] pHAEC s ket £

F/M ratio®}

of wal HAES flocHol anoxic “JE}7F Z A
Absl FA o] EAo] Uoj}rw sk} 9

s Realon 7bg del AHEE T

B

Bl
27|

6N O,—5CH30OH—3N, + 5C0, + TH,0+ 60H

3

NO; +1.08CH;OH+ 0.24H,COy—0.06 Cs H, O, N+ 0.47N, + 1.68 H, O+ HCO.
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g G243 vkSo] A4S F= DOFEE SAHE £E447F FAEHA
floctHe] AAAA &EAALE YEF = 22 olYt} four channel A3}
e 03~08 mg O/L, AA&EHA FHA A= 05 mg 0L, Semi-batch

0 m
FALEHA FHAAE 03~15 mg Oy/LY aerobicHe] &A= e-duks
o] #ago]l Hx Ity IAWPRCY M= 932 vAE= 55290 inhibition
kinetic coefficientE 0.1 mg OyL=Z 3} o).

4. AETH AAA

A2 Sof P A AAAOR FART Y FARA Fo st
= 0T Ao, £30 Be JYITl AFFRES RIFRT 42
S 7H Fad ddom WA Ed we dAA duE FolA A
wopa A sge b BRAQ AAA Axdow Hgrol vt

o] Polyphosphates HHA T + AT vAB == g
st AETA AAA mechanisme o] &l 7har, b Aolm g2l <l
7 FRES e fla s H AL o, o]2dh =¥
3 EBPR(Enhanced Biological Phosphorus Removal)el]l 3+ =
mechanismE 2 1A 59 5344 wiol] ofz WEetA ol &g
e

EBPR2 As& Hdw3t7] 984 i= anaerobic, aerobic®} anoxic 71E <]
FaAdol  aE oY dubyg o g EBPRO 9SS Syt vAE
(polyphosphate (poly-P) bacteria)E< PHAs(poly 3-hydroxy alkanoic
acids) B3k & 7] Z7A 3}t A polyphosphateE ortho-phosphate® 3|3} +=
HA A AAEAX JUAE o] & F Utk 2 F e|FeAdde] fl=
714 Z7A3FA A bacteriax bulk liquidZ4-E polyphosphateES 3% &} 7]
#& ortho-phosphates S48t AT oyl A XA I} FAE 3
AFAE Arkstr] el Add 7142 AR

ol AA HBotE HAYEL AurH o7 poly-P bacteria = bio-P
bacteria® 2]+, Cech® Hartman< <Al A #Hodt= v AE<Q]
poly—P bacteria®] 2ol anaerobicEjoll A acetates o] ©AYS o] &3},

52
flo
[-40
=
i
o
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A WEoll= dolehA &= HEH g7t dee AdEta °o]E G-bacteria®

AutH o2 poly-P HAEEo] F7|x23te] EBPRAZ~¥AA glucoses
o AR F gle Aoz g Advk AAe glucose’t
non-poly-P 7] A& E (acidogenic bacteria)ell 23] SCVFAs= W=7 3t
A et EBPR systemel] ¢t ES m X th(Randall et al, 1994).
acetate®} glucose’} carbon source® A& %ol FHES wf “G-bacteria” A

oz Qg EBPRO 3 HY. 152 #%
o, aerobicZ7 3lo| A polyphosphateE =
b

A9l W= glo] glucoses AHEshE G-

45_9

A7F glucoseE $HFdta &
Z18lA] 9L, anaerobic X713}l
q

acteria’} anaerobic/ aerobic& %

Lok WEE Ay ARFE CODE HlE 0.30~0.724 Xo]a, o]elgh Hl&2
| Ao we} Wkt 2= G-bacteria®.th poly-p bacteria® &3
7 B2 4T P/CODw®t P/AcRIZE =31, o= QUAIA & A4 |
= FAR olgg & 7[He TR wet vdstA vErdH, poly-p
bacteria®} G-bacteriaz= A ZE F7]1& ZAALS slx, olz3 nABE E¥
T2 P/AcER| S Algdte] b H e o e 5

N
I

i
N

7 AAA MABE

oj ¢} o] mAYEo ofgk <l AAC ik Aol oA <Ae A AS
AaiME FeA el 2l AA vl glelef @nh Fuhs TV
Acinetobacter sp.& w3 W3 W8] acetateE 7|2 = anaerobic}
aerobic £31& wo=2A ¢ WEd RJHIHE HESSAH o] AFolA

°l A A= Acinetobacter sp.7} Tolstol  wrE vk I )R
Acinetobacter sp.©= HA A AdAS AA7MAZ PA7IA] KEol
gral Aok ARl A AlA FHEHA FAHAA gES T S e

O

Acinetobacter®o] glom ol A7 FAHNA AHE dukFel nAES

Pseudomonas St Aeromonas<€©| t}.
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G AEE A AA mAE AR

e

pus

24
il

AEgAoz & AAs=d HXA
MCRT % SAEZHES & F Atk & AA vA= 2=9 < 77l=
A Al WA= FgFerE AA Gl @S 2L A= nitrate®] ABAdo]l Ao
A 7] wZol AESHH 1A A 7hestth. MCRTZF 39 Btk Fobk Q1 A
A7F 7bsdty e R BA N gErb Ev 6€9 MCRTAAM = Bt
FAstE #FE F Qo =& REo| A= nitrificationol] 2] 3+ A&7} A
AL A5 FFESIATE pHZF 7T~8014 H
o 9d dwf 19 AHFE&ol F43 TAaHH, gty oz Fiksld = dF%S

NAA = =2 A AAdd FFE vA= Aol BEHIE AT

=

i

o ghol A} = =

l‘ N

’

o&

o
rlo

M

’

9 f71E9 Fateo]l wi DOsE7F 9& A5 o AAEe] 714
) A} Z

191 e AolM= 20%e] Z&o] HEUYAR 24 & anoxic

o AAA
ez WS Qle] WEHM, AA AAA &g 50%0] Derin WEs

At Phoredox AlZ2~®le] anaerobic?®} aerobic FE|lA e && {HUE
(SBOD)# ortho-P(P)¢] #A &= AR A7} &A1k &+ anaerobic’d El
M= SBOD= #astH, Pive S7FetAl vk oA ® o] wsel ot
7%= SBOD#S €& PiZl 6 mg/LolA 24 mg/LE Z7}E uf SBODZ:
2 45 mg/Lol A 15mg/L=E 743te] 1.67 mg SBOD/mg Piel @A 7} At}

dutH o2 QIAA HAWEEC] anaerobicd F7oA]l acetates =
T Uute A wEel °E mAEd HaEA BAE w95 AT ¢ e
2 anaerobic Z7°] ¢l AA MAES A4 FAAZA 7 e 244 @A
7F #oh 1 AlA B ANA S AW e volution granules FAMS A7} lipid,
protein, RNA, magnesium, poly phosphates°] A& ZHo=z IdHA U
T:]-.42)44)45)

luxury uptakedt A ZW 2] poly phosphate granules H %5 %o 25%E =
33k ¢S ®FEtar @l anaerobickd ZA A o]Eo] Holx| ALY A
AbetA WAk 1 AA mAES] AdFe] =o]Al simple carbohydrate

substrate® X33} anaerobichd ZF7lo] gl 7|9 FAEZHAHAAME=
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o]5o] A7l Y=L aerobicd FzdolA AZEHAGE 7]Ho] AAHA
A e 912 poly-P FEE A3 ekA Bt & 5 g

Ao AASYUANS 4% 23 FestA 27IAT= BF o]
Wol AAFEY. 2E0] <lo] Embden-Meyerhof pathway$ Kreb cycle©]
2 9gds g g9 AHE S volutinol#al EElE granulla

H o] A2 DO % pHO FFS Wil T HkE ST A4

ortho-P A3+ S7Fdtha stk &g 12 anaerobic’d
FEfoll A WEH AT anoxic AEjolal A4St HA9jrF w2 A A E=
ortho-P7} W&#

A=A QA 9)\01 DO9] 98L& DO7F 2 mg/LAEY uf Hao <l

& 74

H
%Fol A5

( _ﬂ.m

uptakeZ} o] FolXth. A EHA XA F71E E—ﬁ}ﬂ @& A= DO
7} 0.3 mg/LA =o] 3}l 1 =o] o] FoAAY, F7l= Fotrt =& A Fol
B 01 mg/LA=E olatel A luEo] Algen ™

PAOs (phosphorus—accumulating organisms)i= S <4 T YA mA)

E2A 2E= phosphorus AARE AA
35°CAtel & o 2o L7} EBPR A]2Hl o]
t}. 44Fo 15 mg/Le phosphorus’t ¢
¢ &4 phosphorus:= 20°Coll A 0.4 mg/L, 25°Col A 6.4 mg/L, 30°Cell
21 9.1 mg/L, 325°ColA 106 mg/L, 35°Cell 4] 12.0 mg/LZ YEFYETE 9]
A¥E 50°C~300°C7HA Al2=le] exg dAstA] Waa e

pHE AESHA <19 release 2 uptake 7]%bo] a3k 3= (NADH,)
Ag3 gdste] Fa3 FFS v FAL-571 wETldA 7] A
oA o] HHAE= e pHY F&FS A3 A% FA pH 7oA A
ALE=7F 7h w23, pH 659 7AEolol A Q19 AHFH &Hkd= & AolE
BolAl AN pH 6508kl = dAeHA Fasts 4 =

al, pH 5.2 o]gtell A= wAE e &Aool F435] Astdtial stglon, thA

pH 7 ooz S7/MAE 4% 99 HAHEE 35y =
pHY el tigt A-Aate] st Fo a8 %<l
A dojdtial kATl T3, Acinetobacter?] Ul W2
Hlaeh o pH 8504 ¢F 45% %A YEbdtia Bausii =3 44 &

Fkﬂ
ol
r o
o
o
i
=
Ru)
o
2
4
.
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Mo

HAE @7)/57] ¥4e2 WIS W, pH 794 GAOZF $-HstE o] <l
AAZE B = A kL, pH7} = A7 Z&o] =g
Pilot 7fX¢] bardenpho ¥ 374 AdoA FE&=79 Hdid A4 T%
7F 4.0 mg/LelAd 6.7 mg/L= F7FAS ol Q1 AAES 90%l A 55% =
AaEATL dHA Jdom, A/OFA AN Fdge ZAE dx F
=522l BOD : PRI} E7]x°] F/MH|I7} L3k dHjolA &9 244
A& F%7F 34 mg/LolA 06 mg/Le #HAHUNS Wl &9 ¢ v&
0 mg/LA 09 mg/L& 7FAasich
AETA Q AAFGNA QA AAE F= dAEHAdd s o]Foxm=Z
1gE AFAZERT) S #HAEAT7I= Aol uigrAsiy, =4 da - <l
SAAA FAFANAME F71E AAER ol Hibsiel &2
AAe 1ZE AF AIHS AAgste Aol wlg Fasth A/OFA pilot
plant 2 &A= SRTE 43¢lA 8I= T7HA %S wl BOD/P vl &2 19
ANA 260= F7FH A, AW 9 LS 54%0AM 3T%E FAhETE
ATZAIA7E Ut ol d A= A" A UM FEFY QA FEE
LA 8] YaiME frYEE BODFo] Eofol Atk AL & £ g
T

BESH AAA FAN AP 2 GFe wAE RoE §9

o =
=T

i

N

RBDCOD(Readily Biodegradable COD)E A A 3tl+=dl, o= <AA FH
o] THAYG Aol 93] o] FojHoRE o5 AFE % FrIEHe] &

FAol7] wFolth thdd VFA(Volatile Fatty Acid)E ol&3lA 1 #1A
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% 5714 ARG Seres 2d

B SN AR DAAS £H) AT A e W
o
=

Reaction 1 : PHB Catabolism
PHB+= acetylcoa® 3l o] AW TCA cycle®Z 3w o]zt A & o]
2 FADH,= NADHy°l| $st= Aoz 7FA =}

— CH, . pypOp.s — 1.5 H,0+2.25NADH, +0.5A TP+ CO,= 0

Reaction 2 : Oxidative Phosphorylation
o14ks}t HE-S-(Oxidative Phosphorylation)oll 51 ATP+= NHDH.ZHE A4k
Hol ok dAApAEd AAEAH ATPe 42 §2 YEhdH, P/OHE &¢
Zt},
— NADH, —0.50, + H,O+§ATP=0

Reaction 3 : Biomass Synthesis from PHB

Biomass® &4, 0.27 mol CO:x= C-mol biomass® AAHE o] xt},
AcetylCoAZF-H Biomass A7-A¢] /47 1C-mol biomassel tjgt o]
gt A=A TS sl Z8E HojA = ATPY 42 K= 1dHo %
. fFAZEA marre 8= TASkEH Qe = ATP &H| ol
Biomass7/d < poly-P, PHB, glycogen =22 Xo}x i, CHON 4=
2 A4 ¥ o] 2t} 1C-mol active biomassi= 26 g =o|t}.

—1.27CH, 5 pyr30y.5 — 0.20NH; — 0.015H, PO, — (K+m 4 7p/ 1) A TP— 0.385 H, O
+ CHy, 490y 54Ng.90Po.015 + 0.615NADH, + 0.27C0, = 0

Reaction 4a : Phosphate Transport
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— H,PO{""—1/eNADH, —1/2¢0,+ H,PO;"+ 1/eH,0= 0

Reaction 4b : Polyphosphate Synthesis
Polyophosphate?] $4& & 275 += ATPY UL w2 FIAHo
t}. Polyphosphate?] A4S 9l 1 ATP7F BR3F2E a39 hEZHS 1 9]

.

to Mo

HyPO;"— agATP+ HP Oy, p+ H,0=0
Reaction 5 : Glycogen Production
o] Hk8-& =1 A Ao A oxaloacetateZ 5B glycogen?] AAko]

7 3k}, Oxaloacetate:= glyoxylate cycles %3] PHBEH-E A4tE o] z ),

—4/3CH, ;0. 5ppp —5/6ATP—5/6H,0+ CH,;/;05/s+1/3C0O,+ 1NADH, =0
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. U714 ALY e gdEF 24
1) Acetate uptake and Storage as PHB5"%®

1C-mol acetic acid®] &4=(HAc 05mol¥ 57H<9t PHBZ 2] A3k 371X
Az Agdr. =, pH(a=0~05)°] ¢E8H= ap mol ATPE F 8= o=
acetate®] &4, 05mol ATPE Q2 3+ acetyl CoAER HI 1gx
C-mol acetic acid¥ 0.25 mol NADHE Z 8= 3} PHBZ9] 3ot}

f

2) Polyphosphate Degradation for ATP Production

Acetate®] F5¢F Ao, ATP= poly Peol &3l ola] AitdAr)
Polyphosphate= H;POs2 ¥ d¥t}. Phosphorus, Magnesium, Patasium]
S5 o] WEFo| A% polyphosphate®] T2 MgisKsPOsA . €
4 magnesium, potasium-< o794 # H A 7] wlF9 phosphorus
dFe A714 SAS 9 FAE A4 EHo] At PolyPel Zal=4F-E A4t
H ATPY %4& az ¥dHol Atk 1 P-mol polyphosphate?] 7FFi-af+=
Imol ATPS} 1mol phosphateE A AFstt}, HbHo| phosphate?] o] <3|

AWt YA = BAEA = P E W = 1ot

ry t HPOyy,01,p + H,O—a, ATP+ H; PO,

3a) NADH Production in the TCA Cycle

NADH:= reaction 1914 %™, TCA cycledl Al 22| acetate #3}o
Z253Y Aaso it TCA cycledl A A1tdl ATPi= NADHelA FADH2|
Aeke flel AR E o it

73, 1 CHyO+ (1/2+ a;)ATP+ H,0—>2NADH+ CO,

3b) NADH Production from Degradation of Glycogen
NADH+ d&54o2 PHBZ #A3H+= acetyl CoAdlA EM pathways
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%3] 0.5 C mol glycogen®] A&o 2 HE iy o] Xt}
35 - CHy0/6 056 ciyeogen + 1/6HyO—2/3CH, 5Opyp+1/3C0, +1/2NADH+1/2ATP

Reaction r1~13% “internal reaction”o]2} & x|, A3}s+x =23 3

.
Fiol 2ADT, ol @ WgEe MEIA WG, AH o P2

ke
Moo

o)
£

N

-
T

124}, Internal reaction rates:= AME oA #AFEH

o},
AssEs) wavel 4 & ol

rr

oS

4) Overall Reaction TCA Cycle as Source of NADH

0.50 +a, 1 0.50+aq,
. —CHO, -

acetate Bpotyr ( 3

)V H,0+ 09 CH, ;0 s
2

0.50+a

+0u0@+——;—#@PQ:0
2

5) Overall Reaction Glycogen as Source of NADH

1 0.25+a,
s : — 0}1207 5 CP[I( /60 /6glycogen THPOSI)(JI}/P+ 1.33 C’}[13 0()A5PHB +017COZ
0.25+a 5 025+a,
+— 3P 4+E—7HQO:O



om, dubHow AAs ol & ed=del Aol wek Agie] 24"

.51

St A He AA & 3sh4 A ¥ (physicochemical treatment)$l A
st4 2] ¢ (biological treatment)® FF¥ vl E@3tstd oo A,
2z oolug 3k &3, 7, 9T sol e, FE st f7l=
ojuf FrlES AAG=H ol &kl vk A=A Aede 57444
714 Ae, 54 vAEd o3 A, dFdTe Ay To] e, o=
< B wAEY AXYALE ol&et= HEHolw, FE T #UE
= AAst=H ol&Ha v s Ae, 53] @dEHA A (activated

Fg el misel gow,

oot d

d

il

N

sludge process)< Azl & &o] 7] wfof

o A wol HAEo n”

REeA A e )R BHEE

@ BOD®} CODs ez #H¥H= F71ee v AstAAA AAT A

el E FEE DAY felAt BYaeH AL bz 4R
49 A el A,

D WSARE A FABIEEE WA S,

@ &uEE AUASE FE 5L 47 s,

® FABAE ol St A Sol 8T dnt

Dol z=Ae AN WAE gaAAn ez ¥uE Ase,
@ e AR AUAE Ak da, @e] 2US £28AHL 14F

35



A == A7 g

—~
fie)

o
Eu

e

ol A 1L, HA #elol = W}

o

7}, 7]

A

(SBR)

% AF3}tE A (oxidation ditch)©] v}

ﬁo

7ol %

R

E]— 59)60)

=0

(mixed

}

Mo

<

sl

Mz Az HFAA

7= A=ty Agsgelt

=

gl, ol

=)

H

= A

5}

0] =
A -

5ol

X

o

—~
fie)

)

o
4o

—

__AD

=
fie)
o
Il

=K

. ey ol

P
T

oF7] 412

T
T+

36



(1 J_]:-
) =AY "aA

TR o
A G
e mo B N ML 1 T B
o =0 | ol
o CSlNI P " ol
q 04 o X DAy 9 =
o F M ° o = N SR T < oo )T
so N < o N RN B = oo K I {
S e g oo P N R g0 e_m T E B
M R I gwwzaﬂem N
Wﬂ ) " HA N~ Mo Mo w X o o X T X ™ < B
50 X ) o XV cEA ) — o ok o] A+ My 0 o
= o=z My X o ol o KA )
go N i < 1)y Ny T P .
= oM I T S Gl L = ~a TR T
m,xx%mg%@i ~ E = éﬂ%ﬁ?.x.ﬂﬁ%ﬁu
B . LR T % frﬂ;quq ey
ﬂ@%ﬂ%ﬂ%@ z.mﬂﬂmo rwoau %%ﬂuﬂy
al — =y oy = 5 = W Mo T N 3 W o T oy 2 5B
— o u o ue I o B _— W TR o ) ° ooHN M T B
~ -~ N ST o o o N K 5 Nir oon =
o X mK CiI Ho P w < of ~ o B0 R
7 X o o wﬂ% él%w T %o
o} ogﬂmeEo ﬂnﬂjmﬂ Afow7_vmﬂ1l71ﬂgoqom07
— OﬁE - o ~ — — o % HK JH Y OT _& =) X o 19D} X OT
maoé% < T £ o o M = T M_wwxaﬂas A
RS 2 oy ; N & X T M N < w4 U mﬁ
o g o~ T = pE ¥ = M o @) o =
o B BKom o T o 9 &/ " o W M R S o T
Ty F ag}&mﬂq%ﬂ>$qﬁg o T
oF Lt ;dﬂ T o oF H E._ R oR h. U O HAFO ﬁl o) ﬁl __ﬁ
roE PR 5 B o 1y <0 o g mk o) <o o
° N S gy IF — B AF o T o W
Mo = - om zo O ~ oW N F o ™ o do o5 o3
B % X X B R0 W% WX e o G
T o T 2 % X H b ﬂ%zﬂﬂa%vﬂ%m%ﬂé
Cl T 5 A 5° = B R B T R m Mo AR
BT ) 2 o ] 8 O B ]
Julﬂ%ﬁmoiﬂ ogmﬂﬂioigu@%auﬂﬂﬂ1h%ﬂ
ww Ny &R Gl 0| SRR =Y Y o] X W = Ay IE TR G
T oE WO % T %mﬂSﬂ%a, ximwrwgmmﬂz#
T ao;;;yts LEQEZL 4R oo
oo = o = T as ) o ml RC = ol — < B )
_to;wgua%qamxaf waﬂwfo5+k§;o
ouuuﬂﬂmuﬂﬂ.mﬁﬂa%mﬂﬁﬂ xopl7wm$i
oF mh 3k o & 2o T o & ¥ S
e 9 1w o <A < X b o W Fo Wm o =0 o]
o @mﬂﬂwmo@%%ﬁiﬁ
D E T z SIS
oo

37



A 2] Al

P
T

3

o] $I3te]

S
“

sk @t

Al AA

g we

=
T

]

7)4\0

-
T

3

SRz
2

d

A A d =

PELE

S
“

}q_ 17)18)

fie)

T

o

B

ﬁo
w
™

|

T-P A A Al #3k A5+

=il
=

°] BOD, T-N

P
T

3

EA]

oy

G

0

=N

=K

Mo

!

K

el

Ao}, T

5}

SAtE = TA|

3|
S

F

id
M
Ho

=K

tol o 2 Agas&dt olyXA]

oh5

F A 2 Al o]

S

7

9]

-
T

A

ERE T

5}

2 s ook

i=X

o ¥4

Az AuEd Fded

| wlE s

CE

ki3

7h EoA Al HEZ olo] T

-
o =

et

of of

(2) BEH 1=H7

|

=K
KN

Gl

Ao}, &

=
|

il

=3
10

o=z A

|

s

A

1A o

_vO_l

sl

o

°
Bk

4

sl
of

o

wjr

1960

al

K

A= 2] (advanced treatment) E+=

a4

Al

Y =
7 &4 (Biological Nutrient Removal; BNR)o| &1L

o)
s

Mo

E]— 42)47)53)

5}

w2} A/O, A*O, modified bardenpho 2@ UCTZA 7

i

AY+= FF(main stream)d A3 Phostripa A 3

A

g=

]

NI

38



o 1
: o O T AR Wom K T
R 2N T T al] LAY o =
or — X o EE T <7 :,L
Mo ~ - o T DTS ~5 ok
= o8 N~ A -~ ™ HOm o
g W X kg T do O Ho X5 ol prRC G
s £3 < Fg. o = N o g8 3 — o o) T AR N
o ol GBoX s I E X e T al o
B 5l J0 o ™ R o) A 7] ,Hm o om o o xNd ‘,.m|l ok T
SR N iezo® IS B SE
) — N °° # o wH = N oo 0 i
o N N [y EA T.E . O ol HA.I S ] io _ T%l i) BR — o
% M- m TR #o o X Y 5K Bodo = = W
~ r do X wr N o % [y 6N —_— o}/ —
- Woge o W o % S ITCENCN) A
i Hom N v ¥ = o moE o) o o = W "0 X "
A wﬂi;ﬂw%ogzwgvi J%Lﬂg@ w T P
= ﬂ%ﬂﬂﬁmwiﬁ 01AHD% - %
) ,lq T N o Mo %o AT g % HAF = = o Mo o e bt o
) F oy T ) 2 = = 7 B 3 R "= Hl a0
Ay s o) T 4 o 2 oy W 0 W W 4 oa g © 0 o oo
e %o%%@mﬂ&oﬂm@gﬂ%, mamowwﬂﬂ 5 T ©
o monLﬂ%Pmﬂooﬂ%ﬁmoﬁomﬂmﬂr.@iomnx%mﬂ Mmﬂﬂ
e T < ahy I o o M oo R N i N oy B
g oﬂillqoﬂPﬂP NG g om o _ = T
mﬂ§7mxo_oﬂ7ﬂonivofmuugkau$ = =X
& R zm wm e S N S T R s E o ow T T
T - e o= T oy X° 3 xa I, ) m° =
X = o w N T oo X AU W o o wooNrE o T 2
A R, ésﬂduﬁﬂ%%ﬂ e F o g <X
R P W o T4 T TR e & L
~ ée ° U T = o) < QE £l =n o5 T o I3
™ oy XF m A (NI B o o 1y B a8 W A ML a
. _Z;Aliﬂwauavgﬂwifgﬁg g ®f
° T ée T \ux o= o A = N m o W R &o OT o _,i N \ux T N o
w = T o Mo ~ K o8 T d A F T o = e oF | %o 50
S T ol oo ~— T =~ o M GG o) = ~ = X = TR ok
70 %0 HW o)) o E = VL o @ o ) R wp % = = IH o R/ % g
. A Yo o < W™ W A2 Jﬂmfﬁu?l e x M
3 mos P bo oo o COIES X _ S
B2 mE X0 T o) o of A o) 63 o o m il
= T o - T o) M o — w7 - 5 kil
! NE o] = > W BT = o N N oF o o 2 X X g X 0w A Mo
o W o = ﬂid N T M N oo
° WO = N or = B | o oK X o W < SR o =
oF > o o W N 03 oo A~ 7u e sl S o X
O —_— 0 ~ o)
s ﬂ_1m — 3 ! ) ‘._mﬂ
%ﬁ%@l%%%%
s S ﬂ _ N
o OT

ol] A
39

Eal

2 A

2L

o]l o
AR —— .
WA D:] 5 main Stream

P
T



(3) }‘3%5_]'3:] @iﬁ]ﬂ%@&ﬂ

SEEE

[e]

MERCEESIRSE R

al

>
o
il

KN

)

!
;OH

ol

ruze]

Ho

Frbel kel
Axstel BODA A A8HE &

KR
T

A (single-sludge system)

=YAE

Q]
=

)

il

Mo

o

!

X

tel w2 A

o3

=
Aol 60~70%(3H4]

v gEe] WAEE

st

39)

&

&

WSz o A 0.078~0.115 kg NOs -N/ kg MLVSS/de] ¥ o]t}

°fF 1224 WA

o]
Ao v go] 0.017~0.048 kg NO; N/kg MLVSS/de] o]t}

w42

[<3fe)
=

2

gyl

ruze]

X
Mo
ToR

(L

A} frAbeh,

RA
[€)

DI R

]
=

0

2 A ]

=
=

A L7k 27}

el

A,

o
T

AA AHEHE SAEHATE Y

= AR Abold] Aaste A

—~
fie)

R
el

=
=

Ho

!

o]
il

o
q
my

-

Q3 9

| F714 ARl 2

171 )

A&

40



A

Fig. 8% #o] vl 749

o

fu

@ 4-Stage Bardenpho
A (bardenpho process)

o

o

floll - <]

J

3} )4

Effluant

Qwwaz

A 2]

2%E AasE MLSS/E Wtk fa5vel
H ollel 7] % (@

5712 (2 7]/ )l A

=

o

=

-
T

Aarobic

s aL, o7l o
i

Anaxic

Qraz

Asrobic

71200 A

Qr

3z

=

Anoxic

A
g of71H WAL YS o8

Fig. 8. Schematic diagram of 4 stage Bardenpho.

- A

Infiuant

N~
B

o

she

3}

g ARSE Y, A

-

L

B

S

Aol Ax7txE AA
41



® Wuhrmann33% %2 MLEZA

T oA ZAoZ Wuhrmann®

AL
Hz2 Mg oen, Holo] Ludzacky}

o

o] 1957d HaAA FA =

Ettinger = A2A7A 4% ARagiet. F 243k Jolde 2ds 9

g gade AaAA F8E AEEAT. T A8 Aol dES 9
o

el 2dx5 Fo] FrxdHM 771 AA = ﬂ“ﬂa AR EFHS
gz F7IE AFAA dEAZIH, 2 gagdow AlxEsdl o)
ARE F7155 o] &3tk 18} Ludzack-Ettingerg 8ol A= 245 9]
g Fador fFolstes o8ty flste] Frlx U EHxE HAstu
L7 xol M AAkstE 7Y £gd S MEEA FHE gl xR ofFd

Wuhrmann& Aol A= 23 daA7S floto] @A FolA 8AFF o
o AFAlztel @<=, EAFAAY FALF Aol wE ERYoA

Aho A3 fFEFe gx S7tE duigtel A&l Ausgon,

Ludzack-Ettinger3s 74 ol 4] = 2

2= AAAA &fo] w$ wektlh Barnard® Ludzack*Ettinger%Xéﬁﬂ

e Beste] 7]z TddS FATEY 1~artd gEdE2 wEAlA

AL AAEZEES 8%7FA A 71 modified Ludzack-Ettingers % (MLE
9

9 MLE&®AS ®A L+ Fig. 9¢ Fig.

e

=
i3
o
ol
£
=
=
5
=
Q
=]
5
ok
ol

InHLEnIF A mbic Anaerohic

Relurn sludge

Waste sludge

Fig. 9. Schematic diagram of Wuhrmann process.

42



Fig. 10. Schematic diagram of Modified Ludzack-Ettinger process.
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Fig. 27. Schematic diagram modified of SBR process.
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* MLSS : 2,000~8,000 mg/L *HRT : 6~8 h

*SRT : 10~30 d cWHEE L WERlS

« F/MH] : 0.04~0.30 ksBOD/MLSS/d

* BOD/TN H| : 6~7 ©]%

o Air-Off : 72min, Air-On: 96min, Settle: 60min, Decant: 60min
e Total Cycle time : 48 h
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Fig. 28. Schematic diagram of ICEAS process.
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Fig. 29. Schematic diagram of OMNIFLO process.
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Fig. 30. Schematic diagram of circling vortex SBR process.
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* SRT : 20~45d

10~24 h

* HRT
« F/MH]

« X
Ll

o 1j

: 0.02~0.10 keBOD/MLVSS/d

: 60~90 min

: 45~90 min
: 20~45 min

MR Eds

A7

=
=

A4

5t Decanter A4 o]

3|

A EE

Y

&
o

o0

1iH &

{ Anaxic, Asrobic
Fig. 31. Schematic diagram of KIDEA SBR process.
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Fig. 32. Schematic diagram of CNR process.
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Fig. 33. Schematic diagram of DeNipho process.
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Fig. 34. Schematic diagram of Bio—-SAC BNR process.
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Table 4. General classification of the microorganism according to energy

and carbon source

) d Energy Carbon
Microorganism
resource resource
Photo .
‘ Light CO:
—autorophic
Autotrophic Chemo Oxidation-reduction reaction o
. J d 2
—autotrophic of inorganic matter
Chemo Oxidation-reduction Organic
) ~heterotrophic | reaction of organic matter matter
Heterotrophic -
Photo ) Organic
) Light
—heterotrophic matter
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Table 5. Coefficients of assuming in active sludge model

Symbols Descriptions
Ya Yield for autotrophic biomass
bra Decay coefficient for autotrophic biomass
b Fraction of biomass leading to debris
inXgp Mass of nitrogen per mass of COD in biomass
In/Xp Mass of nitrogen per mass of COD in biomass debris
Kon Oxygen half-saturation coefficient for heterotrophic biomass
Kxo Nitrate half-saturation coefficient for denitrifying heterotrophic biomass
Koa Oxygen half-saturation coefficient for autotrophic biomass
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Table 6. Typical coefficients in active sludge model

Symbols Units Valu:e Valuce
at 20C | at 10T
Stoichiometric parameters
Ya | g cell COD formed (g N oxidized) 024 | 024
Yy | g cell COD formed (g COD oxidized) 067 | 067
fp’ dimensionless 0.08 0.08
ixs | g N (g COD)" in biomass 0.086 | 0.086
iXE g N (g COD) ! in endogenous 0.06 0.06
Kinetic parameter
fty | day’ 6.0 3.0
Ks |g COD m” 200 | 200
Ko |g O;m” 020 | 020
Knvo | g NO3Nm” 050 | 050
bLa | day’ 0.10
by | day ' 062 | 020
by day ' 0.18
Ng dimensionless 0.8 0.8
Nh dimensionless 04 0.4
kn g slowly bildegradable COD (g cell COD'day)f1 3.0 1.0
Kx | g slowly bildegradable COD (g cell COD)! 003 | 001
it o | day’ 0.80 0.3
Kawi | g NHi-N m” 1.0 1.0
Koa | g O, m”’ 0.4 0.4
K. | m"COD(g day)" 008 | 0.04
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Table 7. Characteristics of raw water(effluent in 1% sedimentation tank)

Items Units Concentrations (Average)
pH 3 6.7
Water temperature i@ 25.4
DO mg/L 2.5
CODwn mg/L 82.5
BODs mg/L 101.5
SS mg/L 38.2
T-N mg/L 42.990
NH, mg/L 34.000
NO; mg/L 0.008
NOs3 mg/L 1.430
T-P mg/L 3.440
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Fig. 36. Schematic of micro—nano bubbles generator.
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Table 8. Operating conditions for performance evaluation for CB and

MNB systems in tap water and wastewater

Parameters Units | CB system | MNB system
Effective volume L 400 400
Tap water | Water temperature | °C 16.0 16.0
Airflow rate L/min | 1.0, 2.0, 3.0 | 1.0, 2.0, 3.0
Effective volume L 400 400
1 larifi
st clarilier Water temperature °C 27.1 25.1
effluent
Airflow rate L/min 1.0 1.0
Recirculating / )
) Airflow rate | L/min 1.0, 2.2, 2.5
water quantity

Table 9. Analytical methods

Items Units Methods and Apparatus
DO mg/L DO meter (model YSI 550A)
pH - pH meter (model YSI 601-10 FT)
Water temperature T DO meter (model YSI 550A)
Kia hr' dC/dt = Kia(C-0O)
Oxygen transfer efficiency gOx/hr | N = Koo - Gy * V
VOTR kg/m' - hr | VOTR = Kia x Cq
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Input of tap water and textile wastewater of 400L

in CB system and MNB system

< COClz2 dose of as catalyst
(Input 8 mg/L per DO 1 mg/L)
< Agitation for 30 min
< NaxSOs3 dose
(Input 7.9 mg/L per DO 1 mg/L)

Calibration of "0" as DO concentration

Measurement of water temperature

Calculation of saturated DO concentration(Cs) using Table 20 and equation (31)

Calculation of theoretical oxygen demand with saturated DO concentration(Cs)

Input of 107202 more than calculated Na,SOs dose in reactor

Measurement of DO concentration until 9079526

of saturated DO concentration(Cs)

Fig. 37. Procedure of oxygen mass transfer rate experiments.
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Aaxs FEE 0CAAE 146 mg/LEFE 20TelA 92 mg/L
Aol As 1 b ert el visli @e Aol o
:":

S 1de FEok X we W)

S 83 A

Table 10. Oxygen saturation concentration(Cs) of distilled water at standard

conditions™
Temp.(T) | mg O/L | Temp.(C) | mg OyL | Temp.(C) | mg OL
0 14.6 17 9.7 34 7.2
1 14.2 18 95 35 7.1
2 13.8 19 94 36 7.0
3 135 20 9.2 37 6.9
4 13.1 21 9.0 38 6.8
5 12.8 22 8.8 39 6.7
6 125 23 8.7 40 6.6
7 12.2 24 85 41 6.5
8 119 25 8.4 42 6.4
9 116 26 8.2 43 6.3
10 11.3 27 8.1 44 6.2
11 11.1 28 79 45 6.1
12 10.8 29 7.8 46 6.0
13 106 30 76 47 5.9
14 104 31 75 48 5.8
15 10.2 32 74 49 5.7
16 10.0 33 7.3 50 5.6
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Table 12. Operating quantity and effective volume of each Runs

Effective volume(L)

Conditions Q(L/hr)

anaerobic anoxic aerobic

120 L/hr 60 L 120 L 480 L
Run 1
HRT(hr) 0.5 hr 1.0 hr 4.0 hr
80 L/hr 40 L 80 L 480 L
Run 2,3 and 4

HRT(hr) 0.5 hr 1.0 hr 6.0 hr
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th. NBF A%/O process L= 54 2 A 2842

mtol A2 -t E A FAE o] &3 AEsFAYE A3 LEAe T
o] 744 FFo] HE AYO BTA@INZ/FNaZ/ENZ)CE 50 mY/D T
9] pilot plantE A ZstHom, o]F FAMGAAl Al WSt A gl 1
A AA] Fo] AA ko] S AAsHH ﬂ-’?ﬂﬁl%oﬂ AAE APA
A AR RAEE Fig. 39 2 Fig. 4001 77F vehfide}h. =3 NBF A%/O
process &2l 7/l &E Table 13, &1 xS Table 14°] YEF AT

RN

Fig. 39. Photographs of NBF process system in K wastewater treatment
plant.
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Fig. 40. Schematic of NBF process system(A).
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Fig. 40. Schematic of NBF process system(B).
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Table 13. Specifications of NBF A%/0O process

H
"] a1 o= A A ]
al
EEES 6t | (36 W)x3x2 = 216 W
=) Eﬂ—-’ﬁ
lﬁfﬂ 1y BW
3z
mACIo4! o2t | 400 Wx2 = 800 W
=
Seldx | g | 320 W
W& e
STy 320 W
A =
257 1t |35 W
=AY 1691 W
12842 | 12 | B(1.2m)x L0.9m)xH(1.2m) = 1.728 m’
#7142 | 14 | BU2m)x L0.9m)xH(1.2m) = 1.728 m’
gw | FAAZ | 14 | B(12m)x L0.9m)xH(1.2m) = 1.728 m’
Z7) % 14 | B(1.2m)x L0.9m)xH(1.2m) = 1.728 m’
22" A=A | 14 | 1.298 m°
& 8462 m®
o2 19 L/min=27.36 m’/day
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Table 14. Design criteria and operating conditions for A%/0O process

Parameters Units Design ranges
HRT

- Anaerobic tank h 05 ~ 15

- Anoxic tank e 05 ~ 1.0

- Aerobic tank 35 ~ 6.0
F/M ratio kg BODs/kg MLSS-day | 0.15 ~ 0.25
SRT days 4 ~ 27
MLSS mg/L 2,000 ~ 4,000
Internal recycle ratio % 100 ~ 200
Sludge return % 20 ~ 60
Water temperature T 15 ~ 30
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sty AR e HodFAAANH 2 Standard methohsol] 38} <]
A5t o MFAQl ALeS Table 159 WERHA AT

Table 15. Analytical methods for each parameters

Parameters Analytical methods and apparatus
Conductivity meter

Conductivity
(model YSI Incorporated 30-10 FT)
Turbidity meter
Turbidity o
(model HACH 2100P turbidimeter)
Colorimeter
Color

(model KRK CR-30)
Alkalinity | Titration method

ORP ORP portable meter
DO DO portable meter
TOC analyzer
DOC
(model TOC-5000A, Shimadzu)
Absorptiometric analysis
UV

(model UV-1650PC Spectrophotometer, Shimaszu, Japan)

CODwm KMnO4 method (water bath)

CODc, K2Cr207 method (hot plate)

BODs Winkler-sodium azide method(20C, bdays in incubator)
SS GF/C filter method

Absorptiometric analysis

T-N
(model UV-1650PC Spectrophotometer, Shimaszu, Japan)
Absorptiometric analysis
NHs-N .
(model UV-1650PC Spectrophotometer, Shimaszu, Japan)
Absorptiometric analysis
NO>-N .
(model UV-1650PC Spectrophotometer, Shimaszu, Japan)
Absorptiometric analysis
NOs;-N .
(model UV-1650PC Spectrophotometer, Shimaszu, Japan)
Tp Absorptiometric analysis

(model UV-1650PC Spectrophotometer, Shimaszu, Japan)
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Fig. 41. Comparison of DO concentrations between CB and MNB

systems in 1% clarifier effluent.
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Fig. 42. Comparison of oxygen-mass transfer coefficient between CB and

MNB systems in 1% clarifier effluent.
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e U S9N AR g S the A9 o] vkl § gkt
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1714, N+ 2ol M o] @At k2887 (g0x/hr)

Kia(20) : 20C o419 EAAGAS (hr )
Cs(20) : 20C ol A9 %3 A% % (mg/L)

Aol AN H& olgdtel EEFUNMY ALFAFS AFHGC
FAR 10 Liming 49 CB 413705 MNB 4719494 13 34
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VOTR = Kra X Cs

o714, VOTR : Ata~dEE (kg/m’ - hr)
Cs 1 20T oMo £3} A5 E (mg/L)

1 L/mine® % 12 JHA FE59 45 o 7R« A
B 2t713A 9] VOTR #< 8.04

kg/m - hr A9 12 JAA FE55 Z5F MNB 471429 VOTR #to]
A vetwth 94 AR Kagkel 7127F mAE = 5 2 @S dehd
S 24 VOTR JA MNB A7) A 5ol X = F7kshes A & F

AR

Table 16. Comparison of oxygen mass transfer efficiency between CB

and MNB systems in 1% clarifier effluent

Raw water Alprafi(ejw Kiaeo) ¥ VOTR
i (hr'") (g Oyhr) | (kgm' -hr)
(I/min)
1% CB system 1.0 0.15 0.54 1.34
clarifier
effluent MNB 1.0 091 3.22 8.04
system
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2. ulolaZ-UJxHE A7]FXE o]L£3 Pilot plant A2
7. Run 1 &3z 2%
vl AR - E A7]EXe] axEXE A& HI7ME 9s| Table 11
2 Table 122 7]F22 Run 1 ZA 23 4L AAsAT. v&
Table 179 Run 19 &5 ogt AEnkex A5 diste] A Alst

At

Table 17. Characteristics of water qualites each bioreactor in Run 1

Anaerobic Anoxic Aerobic Effluent

MNB| CB |[MNB| CB |[MNB| CB | MNB| CB
Temp. T | 216 | 218 | 22 | 226 | 222 | 249 | 238 | 62 | 245
pH - 684 | 673 | 670 | 620 | 649 | 617 | 64 | 612 | 631
DO mg/L| 031 | 025 | 031 | 022 | 012 | 343 | 272 | 406 | 293
ORP mV | 29 33 3 =31 - 61 | 2B | 39 | 97
BODs |mg/L| 915 | 387 | 391 | 190 | 200 | 85 | 118 | 56 6.2
CODvin |mg/L| 725 | 400 | 406 | 211 | 222 | 124 | 155 | 118 | 125
T-P |mg/L| 351 | 3770 | 3548 | 3422 | 5330 | 2315 | 2453 | 1.202 | 1.266
T-N  |mg/L| 41603 | 36693 | 36.390 | 24430 | 28222 | 17.388 | 18922 | 16479 | 17475
NH;-N | mg/L | 27.450 | 22538 | 22538 | 19974 | 22312 | 7581 | 8216 | 1672 | 2561
NO;N |[mg/L| 043 | 0510 | 0463 | 0493 | 0509 | 0475 | 0392 | 0.760 | 0.762
NOsN |mg/L| 0857 | 2724 | 2935 | 1709 | 1567 | 2089 | 1.787 | 2289 | 2.363
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Fig. 44. Comparison of DO concentrations between CB and MNB system

bioreactors at Run 1.
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Fig. 47. Comparison of T-N concentrations between CB and MNB

system in each bioreactors at Run 1.
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Fig. 48. Comparison of T-P concentrations between CB and MNB

system in each bioreactors at Run 1.
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Fig. 49. Comparison of nitrogen compounds concentrations between CB

and MNB system in each bioreactors at Run 1.
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Y. Run 2 4z 243

stol A2 -t E AR axAE A84d WI7FE $18) Table 11
2 Table 125 7]¥9=2 Run 2 Zdo 93 £HS& AA3AT. S
Table 1891 Run 29 3ol <gt A&z FHEA | st #|Als}
At

Table 18. Characteristics of water qualites each bioreactor in Run 2

Anaerobic Anoxic Aerobic Effluent

Parameters| Units |Influent
MNB| CB |[MNB| CB |[MNB| CB |MNB| CB

Temp. T | 215 | 220 | 223 | 228 | 223 | 247 | 232 | 249 | 247
pH - | 68 | 677 | 677 | 637 | 664 | 643 | 644 | 639 | 645
DO |mg/L| 030 [ 017 | 018 | 025 | 010 | 329 | 253 | 380 | 267
ORP mV | 3l 36 3 19 | 11 | 248 | 219 | 309 | 253

BODs |mg/L| 7 | 412 | 404 | 160 | 189 | 69 85 5.2 64
CODwn |mg/L| ™1 | 3659 | 45 | 211 | 216 | 113 | 132 | 110 | 126
TP |mg/L| 3105 | 3902 | 404 | 4307 | 3610 | 1.637 | 1890 | 1.132 | 1.223
T-N  |mg/L| 41519 | 34636 | 36159 | 22212 | 26579 | 16.159 | 18286 | 15564 | 16831
NH;-N | mg/L | 30589 | 24.253 | 24.062 | 18479 | 22.117 | 5255 | 7674 | 1574 | 2465
NON |mg/L| 0494 | 0479 | 0456 | 0481 | 0508 | 0451 | 0372 | 0.715 | 0.789
mg/L

NO;-N 0748 | 2578 | 2777 | 1665 | 1.604 | 1925 | 1783 | 2168 | 2443

lo
s
ko]

H % DO ¥% Z3%E Fig. 50 ¥ Fig. 51
AA AT pH dES A5 Ed MNB system® 49 A% 69 W pH
6.86°0 4 2xF HAA WF4 Hyr pH7F 6392 ey, CB system®] 7

S 22 AAA WFHSF Wit pH7} 6452 YERRTE ol ZEA7 A 6 9
THoR 24 CB system® U} wlolag2-ywE 274

e 3 DO X 45 Y " DOsEE 030 mg/L e,
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3.80 mg/L, 267 mg/L%E YEY} MNB system® =37 FHo] 7]& Ak
1F2 o 93 nx=Ae FHel CB systemol] HlE] AEHFEZ oA &&
6 hrol A 4

Mae] oF ArAYREC] Ee O Eor], HRTE
hre 7247 A8l &7)2y DOFE/l dwael ¢4 DOBE 273

mg/LE FAE 7 = Aoz YEL

8.0

T 70 198 677 677
6.04
6:37 643 644 gag 645
60 I I
50
MNB‘ CcB MNB‘ CB MNB‘ CcB MNEI‘ CB
Influent| Anaerobic Anoxic Agerobic Effluent

Fig. 50. Comparison of pH between CB and MNB system in each

bioreactors at Run 2.

110



6.0
50
_ 40 380
= 329
o
£30 o 553 2.67
o L
Q5
10 ¢
1030 g47 018 025 g4
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MNB‘ CcB MNB| CcB MNB| CB MNB‘ CcB
influent|  Anaerobic Anoxic Aerobic Effluent

Fig. 51. Comparison of DO concentrations between CB and MNB system

in each bioreactors at Run 2.

(2) 7718 % FLEF AAEA

LA A7 BODs®| 4% F95 it BODs7F 947 mg/L& YEREow 2
2 AAA {49 MNB system® CB systemeo] Z+7 52 mg/L 2 64
mg/LZ Webstal, 99 B3t CODwn7b 79.1 mg/L= yebstoew 22 A
A WF9 MNB system¥ CB systeme] Z}7} 11.0 mg/L 2 12.6 mg/L
2 YEtR T Run 13 »p7bA = @71% oA w = o3 =
HAoA 7= B2 287F dojd Aor Addy, ALz 7%
ANA HAbst-GdREgol o frieAYY] ARE Qs EHHA {F7]EY

AAZE Ha & R
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100 | 947
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40 |
5.2 6.4
I 69 85 Belwidmgt
0 | |

MNB‘ CB MNB‘ CB {MNB | CB | MNB | CB

influent| Anaerobic Anoxic Aerobic Effluent

Fig. 52. Comparison of BODs concentrations between CB and MNB

system in each bioreactors at Run 2
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i 211 216
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; [ i
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Fig. 53. Comparison of CODy, concentrations between CB and MNB

system in each bioreactors at Run 2.
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AT B YT H T-N @ T-P #%7F 2+2F 41519 mg/L 2
3551 mg/L&E vEsten 23 HdA BHF59 T-N %27 MNB system

2 CB systemol A Z+ZF 15564 mg/L 2 16.831 mg/LZ YESa, T-P &
%7} MNB system % CB systemoll A Z}7F 1.132 mg/L % 1.223 mg/L=
et Run 19 A#teb mlzi7A 2 7|E 27| #Ax 2 A9 CB system
2712 2 FA " MNB system®] =98] Ao
F&o] o] Fojx intFor AAdH FALZ

=%, HRTS| A8}
TG g2 3}

of ws} ZwlAl7]xE

60
50
41.519
- 40
3 34 636 35159
=]
E 30 26.579 Below 20 mg/L
E ) g 18,286 15.564 16.831
20 J5:159 /7 frmmmmmmmanas
10 I I
0
MNB‘ cB MNB‘ CcB MNB‘ CcB MNB‘ cB
influent| Anaerobic Anoxic Aerohic Effluent

Fig. 54. Comparison of T-N concentrations between CB and MNB

system in each bioreactors at Run 2.
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Fig. 55. Comparison of T-P concentrations between CB and MNB

system in each bioreactors at Run 2.
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Fig. 56. Comparison of nitrogen compounds concentrations between CB

and MNB system in each bioreactors at Run 2.
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9. Run 3 +4dxd 23

nfol AR -y S AR 1y AEAd HIFE 9@ Table 11
2 Table 125 7]52& Run 3 ZHdo] 23 +d4LS A& e
Table 19¢] Run 3¢ 4o o9& =93 FHS5Ad thete] A A st
P

Table 19. Characteristics of Water qualites each bioreactor in Run 3

Anaerobic Anoxic Aerobic Effluent
MNB| CB |[MNB| CB |[MNB| CB | MNB| CB
Temp. T | 20 | 223 | 28 | 223 | 247 | 232 | 249 | 247 | 245

pH - 679 | 683 | 631 | 657 | 619 | 649 | 620 | 643 | 631

DO mg/L| 018 | 013 | 015 | 012 | 317 | 227 | 334 | 232 | 293

ORP mV | 40 36 A U 22 | 18 | 317 | 18 | 297

Parameters| Units |Influent

BODs |mg/L| 4996 | 365 | 114 | 167 | 49 | 104 | 43 74 6.2
CODwn |mg/L| 402 | 424 | 149 | 208 | 91 | 156 | 82 | 126 | 125
T-P |mg/L| 4113 | 4167 | 4472 | 4001 | 1319 | 2764 | 0916 | 2.344 | 1.266
T-N  |mg/L| 36817 | 36274 | 18745 | 26579 | 16.159 | 20.827 | 13727 | 18023 | 17475
NH;-N | mg/L | 28069 | 22570 | 14101 | 20.106 | 6.029 | 10.793 | 1.318 | 5978 | 2561
NO-N |mg/L| 04% | 0445 | 0797 | 0519 | 0.763 | 0436 | 078 | 0631 | 0.762
mg/L

NO;-N 2463 | 2831 | 3759 | 1347 | 3925 | 1985 | 4249 | 2184 | 2363

Run 3¢ £dZ43 93 pH @ DO ¥ % ZAFE Fig. 57 ¥ Fig. 58
o

A At pH 35S A3 EA MNB systeme 2% Hx= 69 i pH
6.9101 4 22 HAd=] WF{ P pHZF 6202 YEFSIL, CB system®] 7

$ 228 AAA WHF Ha pH7F 64322 yERYT 3 DO w2 A$
=+ 032 mg/L g2, MNB system % CB system®

0 55+ 27 334 mg/L ¥ 2.32 mg/Li H—E‘r
1} MNB system® axxg] 3ol 7|& A7| &R0 93 1%y &
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ol

21 CB systemeol] Hl&| AEHFSZ oA &5

2 Aoz yEstoen, o= Run 1, 2014 &4+
mg/Lel Al 5000 mg/LE AERHEZEY HAE =&
Ao ForE},

9.0

8.0

7.0

pH

6.0

2.0

Aol o) Ak

Lk g79 683
a5 o e it
) 6.19 6.20
MINB ‘ CB | MNB ‘ CB | MNB ‘ CB | MNB ‘ CcB
influent| ~ Anaerobic Anoxic Aerobic Effluent

Fig. 57. Comparison of pH between CB and MNB system in each

bioreactors at Run 3.
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Fig. 58. Comparison of DO concentrations between CB and MNB system

in each bioreactors at Run 3.

(2) 7718 % FLEF AAEA

A4 BODs9| 4% F95 it BODs7F 915 mg/L& YERow 2
2 AAA {49 MNB system® CB systemeo] Z+7 43 mg/L 2 74
mg/LZ Webstal, 99 B3t CODwn7b 76.9 mg/L= WeEbstow 22
A w559 MNB system? CB systemo] Z}7} 82 mg/L % 12.6 mg/L=
YERS T Run 1 2 23 »z7bA 2 @7]% WiFolA md sz o3 =
HAoA 7= B2 287F dojd Aor Addy, ALz 7%
ANA HAbst-GdREgol o frieAYY] ARE Qs EHHA {F7]EY

o

AAZE Ha & R
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Fig. 59. Comparison of BODs concentrations between CB and MNB

system in each bioreactors at Run 3.
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MNE‘ CcB MNB| CB MNB| cB MNB| CcB

Influent|  Anaerobic Anoxic Agrobic Effluent

Fig. 60. Comparison of CODy, concentrations between CB and MNB

system in each bioreactors at Run 3.
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Oc:)] OCJ:

jultd

79 A FYg B T-N 9 T-P 557} 747F 40447 mg/L 2
2934 mg/LE vEstoen 23 HHA BHFS9 T-N %27 MNB system
2 CB systemol A Z+zb 13.727 mg/L 2 18.023 mg/Li YElsta, T-P &
Z7} MNB system % CB systemol A Z+ZF 0916 mg/L 2 2.344 mg/Li
vebykth MNB system® ¢ ¥exU nAE FEE o] SHsldRE
FAdAF] AA7 golat Ao AR EHY CB system® A% Z7]FA
A= JAEFF7F e o=z #8ehA @S o= vy

60
B0
140.447
- 40 r 36.817 368274
=
=21
E a0 t 26.579 Below 20 mg/L
= 18.023
i 18745 20821 13,727
20 7 16159 g -1t
N I I I
0
MNB‘ CB MNB‘ CB MNB‘ CB MNB‘ CB
Influent| Anaerobic Anoxic Aerobic Effluent

Fig. 61. Comparison of T-N concentrations between CB and MNB

system in each bioreactors at Run 3.
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Fig. 62. Comparison of T-P concentrations between CB and MNB

system in each bioreactors at Run 3.

6.0

[
&3]

Il s NO2-N | |

[
=]

Nitrogen concentration {mg/L)
— — ) )

o

Fig. 63. Comparison of nitrogen compounds concentrations between CB

and MNB system in each bioreactors at Run 3.
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2. Run 4 4z 2%

X

vpol AZ-UYXxHE 7] FA 9] A A4 HrHE 98] Table 11 %
Table 125 7|22 Run 4 279 93t *4& AA59 . thS Table 20
o] Run 49 &do] 9% HENSzE FAEA thate] A|A st

Table 20. Characteristics of Water qualites each bioreactor in Run 4

Anaerobic Anoxic Aerobic Effluent
MNB| CB |[MNB| CB |MNB| CB | MNB| CB
Temp. T | 215 | 220 | 23 | 228 | 223 | 247 | 282 | 249 | 247
pH - 683 | 673 | 674 | 639 | 652 | 624 | 637 | 619 | 638
DO mg/L| 036 | 014 | 016 | 021 | 015 | 312 | 213 | 319 | 206
ORP mV | 40 57 4 2 21 241 156 | 26 | 152
BODs |mg/L| B6 | 624 | 649 | 83 | 146 | 37 | 117 | 35 85
CODwin |mg/L| 84 | 541 | 57 | 113 | 174 | 59 | 169 | 44 | 133
T-P  |mg/L| 2623 | 4322 | 4076 | 4688 | 3617 | 1193 | 2573 | 0.7 | 2.227
T-N |mg/L| 37833 | 34082 | 33461 | 15273 | 22.768 | 13.036 | 19.124 | 12.465 | 17.342

mg/L

mg/L

mg/L

Parameters| Units |Influent

NH;-N 20437 | 21658 | 21407 | 11.265 | 16294 | 4804 | 929 | 1.093 | 55H
NO-N 0404 | 0479 | 0467 | 0551 | 0.708 | 0532 | 0418 | 0679 | 0518
NOs-N 0536 | 2376 | 2632 | 1511 | 1311 | 2497 | 1584 | 2536 | 1448

°l% pH % DO %= Z3E Fig. 64 % Fig. 65 °
AABA T pH &5 A RW MNB system® 29 %z 9 %+ pH
6.83¢1 4 22+ WA WHS Fd pH7F 6192 eI CB system®] 749

=
22 AR {5 Het pHYF 63822 yvEelykth =3 DO sx9 A$ #
ol Hir DOFEE 0.36mg/L 992m, MNB system % CB system«] 22k
A=A v

i 7HA = AA MLSS?! 3,000 mg/Loﬂfﬂ 5,000
mg/L2 Aedsxzd MAE sE55 77 W Ao dAde

l _4
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Fig. 64. Comparison of pH between CB and MNB system in each

bioreactors at Run 4.
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Fig. 65. Comparison of DO concentrations between CB and MNB system

in each bioreactors at Run 4.
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(2) fi71E % 4L 7F AASEA

XA BODs9 A9 94 B BODs7F 986 mg/LZ UEIS o™ 2
2 AAA {49 MNB system® CB systemo] Z+7F 35 mg/L 2 85
mg/LZ Yeba, F94 H CODw, /b 824 mg/LE vebygton 23 A
A w559 MNB system?} CB systemo] Z}7} 44 mg/L 2 13.3 mg/L=
Uebgth ol - mzvbA R FU)E WA mAd sl o3 =
HAZoNA F7]E9 B ARV dojd ZAow gAuyn, FAAhE $U]F
ANA HAbst-GdREgol o3 FrieAYY] ARZ Qs EHHA {F7]EY

AAZE Ha a& eI

y

120

| 986
100 |

goa 649

BOD, (mg/L)
2

40
35 85
146

a0 83 "7 Below 10 mg/L
37 NPl ===eemmmme=-

0 . [ = [ |
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influent| Anaerobic Anoxic Aerohic Effluent

Fig. 66. Comparison of BODs concentrations between CB and MNB

system in each bioreactors at Run 4.
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Fig. 67. Comparison of CODwy, concentrations between CB and MNB

system in each bioreactors at Run 4.

2

dUdAF 45 794 " T-N 2 T-P 5=7F 247 37.833 mg/L 2
2.623 mg/LZ ek or 22 A XA LE’%‘—«] T-N %7} MNB system
2 CB systemol Al ZFzF 12.465 mg/L 2 17.342 mg/LZ YEwa, T-P 5
=7} MNB system % CB systemelA ZFZ} 0.792 mg/L % 2.227 mg/LE
et MNB system®] 45 8HExU PAE R
FEEFTE AA ol Aoew AlREHY CB system® 4% &

] AFT7F EA ez A&atA e Aoz Fobdch =3k i
HE RS 100%0 A 200% = S7HA1A g Ao o) ARz A
gGdngo] F7tek Aow FehEh
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Fig. 68. Comparison of T-N concentrations between CB and MNB

system in each bioreactors at Run 4.
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Fig. 69. Comparison of T-P concentrations between CB and MNB

system in each bioreactors at Run 4.
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Fig. 70. Comparison of nitrogen compounds concentrations between CB

and MNB system in each bioreactors at Run 4.
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mlol a2 E Ao nxAy e HE Y LAz
A Ao o8 AAEES Table 21 2 Table 220 LFeRI T},
& Hudy 7]E A7 4R E o] &3 CB systemol H|3] =W A7]E 4
A& ©o]&3g MNB systemo] 715 % JIdF AAN F of &3
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Table 21. Removal efficiency for each parameters on MNB and CB systems

) Run 1 Run 2 Run 3 Run 4
Parameters Units
MB| B || B [aMnB] B [ MnB] B
BOD % | 886 | 831 | 899 | 87.9 | 904 | 887 | 894 | 874
O % | 766|768 | 792 | 76.4 | 803 | 77.1 | 82.6 | 79.0
TP % | 661 | 643 | 635 | 60.6 | 693 | 55.0 | 69.8 | 53.2
TN % | 364 | 340 | 372 | 354 | 364 | 332 | 393 | 357
mg T-N/g
SNR 0.766 | 0.711 | 0.685 | 0537 | 0.404 | 0.466 | 0.323 | 0.350
MLSS/hr
NO» N
sor  |"NONEL 0073 L o.087 | 0.060 | 0033 | 0.028 | 0197 | 0.055
MLSS/hr

Table 22. Comparison of CB and MNB removal efficiency for between Run

1 and Run 3

Parameters Units fun 1 Run 3
CB MNB

BODs % 88.1 90.4
CODmn % 76.8 80.3
T-pP % 64.3 69.3
T-N % 34.0 36.4
SNR mg T-N/g MLSS/hr 0.711 0.404
SDR mgNO3;-N/gMLSS/hr 0.073 0.033
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3. NBF A%*O process& ©o|£% d51Exe A2}

Mo

o

nfo] A2y E A7 FXe nx=Ag HLA HE 93] Ks5A g
A 12 AAA FEFE o] &3] NBF processd &S AA st Kt
A 2daA AYO ZAHoR AYS AAFYom Table 239 Al

AlE QIAHE 712 ® condition 1~45 8~11¢¥ &<+ 43It

2

Table 23. Specification of each conditions in NBF process

Items Units | Condition 1| Condition 2 | Condition 3 | Condition 4
MLSS mg/L 2500 3000 3000 3500
Temperature e, 25.3 22.6 20.6 187
Anaerobic| mg/L 0.17 0.14 0.11 0.08
DO | Anoxic mg/L 0.31 0.27 0.23 0.19
Aerobic mg/L 2.87 2.28 2.07 1.84
HRT hrs 6.14 495 4.05 4.05
SRT day 12.27 11.96 12.21 12.72
F/M ratio kg/kg-day 0.08 0.13 0.19 0.19

7}. Condition 1 4% AT

Condition 19] =Hdzx7e] o|& mlolaz-yrE AEFATA o
e FARMATN 477 8/11~8/249 <t BODs, CODyn, T-N 2 T-P
o 49 HAtsEe 22 931 mg/L, 725 mg/L, 41561 mg/L ¥ 3328
mg/LE YEow, fEF ¥ T 747} 450 mg/L, 22.7 mg/L, 28273
mg/L 2 1167 mg/L= vERsth f945 tiv] BODs 59 49 Hd A
&8 51.6%, CODyni= 685%, T-N<& 31.7%, T-P= 64.8%= e

=l

s:
=Y
OF
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Table 24. Results of operating condition 1 for NBF A%/0O process

BODs(mg/L) | CODwmn(mg/L) T-N(mg/L) T-P(mg/L)
Date Influent | Effluent | Influent | Effluent | Influent | Effluent | Influent | Effluent
8/11 | 924 45.5 73.9 222 | 42403 | 287797 | 3.821 | 1.136
8/12 | 936 45.6 88.7 234 | 41.726 | 28.379 | 3.740 | 1.103
8/13 | 91.0 45.3 74.4 242 | 41137 | 28.113 | 3499 | 1.176
8/14 | 90.7 45.1 72.9 229 | 40.849 | 27958 | 3452 | 1.184
8/15| 894 45.7 68.3 222 | 44.041 | 27692 | 3588 | 1.219
8/16 | 929 45.1 67.2 225 | 41225 | 29.301 | 3.313 | 1.182
8/17 | 904 46.0 64.4 232 | 39.839 | 29.112 | 3442 | 1417
8/18 | 89.6 44.6 70.0 217 | 37198 | 28479 | 2.892 | 1.057
8/19 | 90.1 44.7 71.1 22.8 | 38240 | 28.060 | 3.001 | 1.026
8/20 | 94.6 444 68.8 235 | 40415 | 27.807 | 3.118 | 1.094
8/21 | 923 44.2 67.9 226 | 40587 | 27.660 | 3.261 | 1.124
8/22 | 98.0 44.8 70.0 219 | 42439 | 27.100 | 3.203 | 1.158
8/23 | 101.3 44.1 80.3 220 | 46.640 | 28607 | 3.183 | 1.122
8/24 | 971 44.9 76.8 226 | 45110 | 28756 | 3.074 | 1.346
Avg.| 93.1 45.0 72.5 227 | 41561 | 28.273 | 3.328 | 1.167
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Table 25. Removal efficiency of operating condition 1 for NBF A*/O

process
Removal efficiency(%)
Date
BODs CODwin T-N T-P
8/11 50.8 70.0 32.1 70.3
8/12 51.3 73.6 32.0 70.5
8/13 50.2 67.5 31.7 66.4
8/14 50.3 68.6 31.6 65.7
8/15 489 67.5 37.1 66.0
8/16 51.5 66.5 289 64.3
8/17 49.1 64.0 26.9 58.8
8/18 50.2 69.0 234 63.5
8/19 50.4 67.9 26.6 65.8
8/20 53.1 65.8 31.2 64.9
8/21 52.1 66.7 319 65.5
8/22 54.3 68.7 36.1 63.8
8/23 56.5 72.6 38.7 64.8
8/24 53.8 70.6 36.3 56.2
Average 51.6 68.5 31.7 64.8
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Fig. 72. Variation of CODw, concentration in NBF A%/O pcoress at condition 1.
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Fig. 73. Variation of T-N concentration in NBF A%/0 pcoress at condition 1.
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Y. Condition 2 34 x7A A7

Condition 2¢] #+dzx7e] o5 wolaZ-vxwE 1eFAg T &4
o W FAEAAI A7 9/1~9/149 H<¢F BODs, CODyy, T-N 2
T-Po #9492 HdsEE 247 126.3 mg/L, 101.9 mg/L, 41505 mg/L %
3620 mg/LZ YEelsteow, &5 Hit w25 7217 44.2 mg/L, 37.7 mg/L,
30.066 mg/L % 1501 mg/L= Yetwth #95 ¥l BODs d%5° 4%
B AYEE 64.9%, CODyp 624%, T-N& 274% 2 T-Pi= 584% %
e T

Table 26. Results of operating condition 2 for NBF A%/O process

5 BODs(mg/L) CODwin(mg/L) T-N(mg/L) T-P(mg/L)
ate

Influent | Effluent | Influent | Effluent | Influent | Effluent | Influent | Effluent
9/1 1204 48.1 89.3 402 | 42071 | 31.117 | 3.509 1.571

92 | 1216 37.6 99.3 36.3 | 41.369 | 32.741 | 3.743 | 1.449

93 | 1181 40.3 86.7 353 | 46.714 | 30.411 | 3.309 | 1.549

94 | 1038 42.1 73.9 371 | 42302 | 28943 | 3.662 | 1.509

9/5 | 1149 39.0 93.7 34.0 | 40440 | 29.804 | 3.821 | 1.488

96 | 1269 43.2 110.1 382 | 38662 | 27.770 | 3.702 | 1.509

97 | 1320 40.4 1274 304 | 41481 | 26.029 | 3.941 | 1.634

98 | 1334 48.7 107.6 39.1 | 40.719 | 27.882 | 3.545 | 1.513

99 | 1242 479 94.0 36.2 | 42291 | 29482 | 3.743 | 1.279

9/10 | 137.2 50.6 102.0 41.0 | 39475 | 31.403 | 3.489 | 1.550

9/11 | 142.8 47.2 1144 40.2 | 41483 | 30.255 | 3.594 | 1.386

9/12 | 1353 49.3 106.7 39.1 | 43.194 | 31.769 | 3.803 | 1.513

9/13 | 137.0 40.6 109.3 372 | 40.072 | 32.307 | 3474 | 1.566

9/14 | 120.3 43.3 1115 38.3 | 40.800 | 31.004 | 3.339 | 1.493

Avg.| 1263 44.2 101.9 377 | 41.505 | 30.066 | 3.620 | 1.501
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Table 27. Removal efficiency of operating condition 2 for NBF A*/O

process
Removal efficiency(%)

Date
BODs CODwin T-N T-P
9/1 60.0 55.0 26.0 95.2
9/2 69.1 63.4 209 61.3
9/3 65.9 59.3 349 53.2
9/4 594 49.8 31.6 58.8
9/5 66.1 63.7 26.3 61.1
9/6 66.0 65.3 28.2 59.2
9/7 69.4 72.2 37.3 58.5
9/8 63.5 63.7 315 57.3
9/9 61.4 61.5 30.3 65.8
9/10 63.1 59.8 204 55.6
9/11 66.9 64.9 27.1 61.4
9/12 63.6 63.4 26.5 60.2
9/13 70.4 66.0 194 54.9
9/14 64.0 65.7 24.0 55.3
Average 64.9 62.4 274 58.4
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Fig. 75. Variation of BOD5 concentration in NBF A%/O process at condition 2.
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Fig. 76. Variation of CODwy, concentration in NBF A%/O process at condition 2.
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Fig. 77. Variation of T-N concentration in NBF A%/0 process at condition 2.
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Fig. 78. Variation of T-P concentration in NBF A%O process at condition 2.
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t}. Condition 3 41 x4d AT

\I

Condition 3¢] +dzx7e] o5t wolaZ-vxHE 1eFAg T &4
o g FARAA £47)7F 10/1~10/14% 5<F BODs, CODy, T-N 2
T-Po #9492 HdsEE 27 1358 mg/L, 113.6 mg/L, 49.143 mg/L 2
4236 mg/LZ YESor, §&4 A FEE Z2H7F 288 mg/L, 22.6 mg/L,
32895 mg/L ¥ 1.854 mg/LZ YElET 94 thH] BODs &9 ¢
B AgEE 785%, CODyneE 79.5%, T-N& 32.8%, T-P= 562%= el
fra=y

Table 28. Results of operating condition 3 for NBF A%/O process

BODs(mg/L) | CODum(mg/L) T-N(mg/L) T-P(mg/L)
Influent | Effluent | Influent | Effluent | Influent | Effluent | Influent | Effluent
10/1 | 1423 29.4 134.7 | 220 | 48930 | 33.240 | 4.012 | 1.765
10/2 | 1231 31.1 98.0 22.1 | 50481 | 32.245 | 3.831 | 1.747
10/3 | 1349 31.1 1076 | 224 | 51.332 | 33545 | 4.229 | 2.046
10/4 | 1273 29.2 1127 | 232 | 47481 | 32526 | 4.103 | 1.798
10/5 | 1339 314 1204 | 242 | 42364 | 32.465 | 3.948 | 1.768
10/6 | 146.6 31.3 122.3 | 225 | 44802 | 34135 | 4.071 | 1.796
10/7 | 130.0 315 100.6 | 228 | 49.348 | 34.455 | 4.116 | 1.865
10/8 | 1583 29.0 1376 | 234 | 48204 | 33.146 | 4.200 | 1.746
10/9 | 1206 30.8 88.0 237 | 50.557 | 33.465 | 4.304 | 1.747
10/10| 103.8 26.8 76.4 22.1 | 52418 | 32.168 | 4.193 | 1.786
10/11| 163.0 26.5 139.2 | 224 | 51.337 | 32.165 | 4.423 | 2.063
10/12| 144.2 26.2 130.7 | 21.8 | 50.394 | 32.642 | 4526 | 1.746
10/13| 1309 24.1 101.2 | 214 | 49.005 | 32.165 | 4.710 | 2.016
10/14| 1424 24.8 1204 | 225 | 51.342 | 32.165 | 4.632 | 2.066
Avg.| 1358 28.8 1136 | 226 | 49.143 | 32.895 | 4.236 | 1.854

Date
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Table 29. Removal efficiency of operating condition 3 for NBF A*/O

process
Removal efficiency(%)

Date
BODs CODwin T-N T-P
10/1 79.3 83.7 32.1 56.0
10/2 74.7 774 36.1 54.4
10/3 76.9 79.2 34.7 51.6
10/4 77.1 79.4 315 56.2
10/5 76.5 799 234 52.2
10/6 78.6 81.6 23.8 55.9
10/7 75.8 713 30.2 54.7
10/8 81.7 83.0 31.2 58.4
10/9 74.5 73.1 33.8 59.4
10/10 74.2 71.1 38.6 57.4
10/11 83.7 839 37.3 53.4
10/12 81.8 83.3 35.2 61.4
10/13 81.6 789 344 57.2
10/14 32.6 31.3 374 55.4
Average 785 795 32.8 56.2
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Fig. 79. Variation of BOD5 concentration in NBF A%/O process at condition 3.
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Fig. 80. Variation of CODw, concentration in NBF A%/O process at condition 3.
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Fig. 81. Variation of T-N concentration in NBF A%/0 process at condition 3.
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Fig. 82. Variation of T-P concentration in NBF A%/0O process at condition 3.
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Z}. Condition 4 41 x4A AT

Condition 4¢] #+dzx7o] o5 wolaZ-vxHiE LeFAg T &4
of g FREMAI} A7 10/22~11/142 F<F BODs, CODy,, T-N
2 T-P9 #d49 His=t 22 1490 mg/L, 128.0 mg/L, 54.614 mg/L
2 4661 mg/LE YEIRoH, &5 Hd sEv 247 389 mg/L, 303
mg/L, 34.870 mg/L 2 2.388 mg/LZ YEIST. 599 div¥] BOD; 3&-o
735 Bt AYEE& 73.8%, COD\n= 76.1%, T-N& 36.1%, T-Pi= 48.7% =
e T

Table 30. Results of operating condition 4 for NBF A%/O process

BODs(mg/L) | CODum(mg/L) T-N(mg/L) T-P(mg/L)
Influent | Effluent | Influent | Effluent | Influent | Effluent | Influent | Effluent
10/22| 144.1 384 116.7 | 31.7 | 54713 | 34.044 | 4421 | 2.071
10/23| 150.0 319 129.8 | 271 | 55.253 | 33.182 | 4.736 | 2.131
10/24| 150.3 36.8 1334 | 288 | 54.094 | 34.391 | 4812 | 2.044
10/25| 1676 42.0 1472 | 374 | 51505 | 32.407 | 4.420 | 2.361
10/26| 144.6 434 123.1 354 | 52004 | 35.506 | 4.309 | 2.124
10/27| 1534 33.3 117.3 | 253 | 54.740 | 37.048 | 4.748 | 2.293
10/28| 127.1 279 1229 | 200 | 53621 | 35.933 | 4.891 | 2411
10/29| 140.6 394 110.0 | 279 | 57434 | 36.804 | 4.741 | 2.436
10/30| 134.3 49.3 107.3 | 413 | 56.314 | 34.130 | 4.866 | 2.189
10/31| 1559 52.3 1469 | 40.0 | 53419 | 32.004 | 4599 | 2.509
11/1 | 1439 38.3 129.3 | 301 | 54602 | 34.183 | 5112 | 2.633
11/2 | 1514 339 1204 | 256 | 52.379 | 34.660 | 4.641 | 2.749
11/3 | 154.0 40.4 1322 | 273 | 58493 | 37.936 | 4.348 | 2.800
11/4 | 169.3 379 1549 | 268 | 56.021 | 35.947 | 4.604 | 2.679
Avg. | 149.0 389 128.0 | 303 | 54614 | 34.870 | 4.661 | 2.388

Date
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Table 31. Removal efficiency of operating condition 4 for NBF A*/O

process
Removal efficiency(%)

Date
BODs CODwin T-N T-P
10/22 73.4 72.8 37.8 53.2
10/23 78.7 79.1 39.9 55.0
10/24 75.5 78.4 36.4 57.5
10/25 749 74.6 37.1 46.6
10/26 70.0 71.2 31.7 50.7
10/27 78.3 78.4 32.3 51.7
10/28 78.0 83.7 33.0 50.7
10/29 72.0 74.6 359 48.6
10/30 63.3 61.5 394 55.0
10/31 66.5 72.8 40.1 454
11/1 73.4 76.7 374 485
11/2 7.6 78.7 33.8 40.8
11/3 73.8 79.3 35.1 35.6
11/4 716 82.7 35.8 41.8
Average 73.8 76.1 36.1 487
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Fig. 83. Variation of BOD5 concentration in NBF A%/O process at condition 4.
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Fig. 84. Variation of CODw, concentration in NBF A%/O process at condition 4.
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Fig. 85. Variation of T-N concentration in NBF A%/0 process at condition 4.
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Fig. 86. Variation of T-P concentration in NBF A%O process at condition 4.
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Table 32. Operating conditions of NBF A%/O process bioreactors

Coefficient Units Condition | Condition | Condition | Condition
S 1 2 3 4
v m’ 5.346 5.346 5.346 5.346
Q m’/day 20.88 25.92 31.68 31.68
Qw m°/day 0.1 0.1 0.1 0.1
Si mg/L 93.1 126.3 135.8 149.0
Se mg/L 45.0 44.2 28.8 389
Sc mg/L 48.1 82.1 107.0 110.1
Oc day 12.3 12.0 12.2 12.7
t day 0.26 0.21 0.17 0.17
X mg/L 2500 3000 3000 3500
Xr mg/L 1200 1200 1200 1200
Xe mg/L 50 50 40 45
Xw mg/L 500 500 500 500
Ls kg/kgMLSS-d 0.08 0.13 0.21 0.19
Lv kg/m’-day 0.36 0.61 0.80 0.88

Q : flow rate(m’/day)
Si © influent substrate concentration(mg/L)
Se : effluent substrate concentration(mg/L)
Sc : Si-Se(mg/L)
Oc : solid retention time(day)

t : hydraulic retention time(day)
X : biomass concentration in reactor(mg/L)
Xr : return biomass concentration(mg/L)

Xe : effluent biomass concentration(mg/L)
Ls : F/M rate(kg/kg MLSS-d)

Lv : BOD load(kg/m’-day)
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Table 33. Removal efficiency of each operating condition for NBF A%/0

process
Removal efficiency(%)
Contents
BODs CODwn T-N T-P
Condition 1 51.6 68.5 31.7 64.8
Condition 2 64.9 62.4 274 58.4
Average
Condition 3 785 79.5 32.8 56.2
Condition 4 73.8 76.1 36.1 487
Minimum 51.6 62.4 274 48.7
Maximum 785 79.5 36.1 64.8
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Fig. 87. Removal efficiency of effluent in NBF A%*/O process.
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(1) NBF A%0O process €AA 5H8AA59 3

B o] 7jr® NBF A%O process® #4284 H7LS 98 71& o
T 2 FHIL Q= AT F9EH 73”‘?—94 H] ul - 7} 8}%}.
NBF A%O process®] Condition 3& 7132
sto] FH38t4 AlGE AbAstden, 4 Tjr% Table 300 A A5t =
5 AT uf oy F7Fe sF=ol ds] BODs ¢ CODwn #= Hlulsh
Aol HrEA| %&5}‘34 o3t e V2R HBEITA E= shehH Ay

& 4R Ao

o

Table 34. Characteristics of influent and effluent for Conditions 3 in NBF

A?/O process bioreactors

Tests Operation BODs(mg/L) CODwin(mg/L)
days Influent effluent Influent effluent
1 14 135.8 28.8 113.6 22.6
2 4 128.9 20.9 126.1 28.3
3 6 113.9 14.9 109.4 20.9
4 3 123.6 17.3 118.1 21.6
Average 125.6 20.5 116.8 23.4

Fig. 83+ f71= Fotdd wE 799 +E59 CODw/BODsH] ol 1}
2 Al ss F4staA At 999 CODwn/BODsHI &= 0.93(73 3
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CODe/BODH] 15~2.0%3 nmetd wre Hom o4 Alme] &4
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Table 35. CODnmy/BODs5 ratio of influent and effluent in condition 3

) CODwMy/BODs
Tests Operation day
Influent Effluent
1 14 0.84 0.78
2 4 0.98 1.35
3 6 0.96 1.40
4 8 0.96 1.25
Average 0.93 1.20
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 y=o dH 2 Ve AdaAs e 2o
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v intercept = —= (day '), slope i

max max

Table 36. Operating conditions of reactor for Conditions 3

Tests Q Oc t X Xr Xe
(m'/day) | (day) (day) (mg/L) | (mg/L) | (mg/L)

1 31.68 12.1 0.17 2,930 1,200 40
2 31.68 12.1 0.17 3,110 1,190 42
3 31.68 12.5 0.17 2,920 1,170 38
4 31.68 12.0 0.17 3,090 1,190 42
Q : flow rate (m?*/day)
S; ! influent substrate concentration (mg/L)
S. : effluent substrate concentration (mg/L)
6. : solid retention time (day)
t : hydraulic retention time (day)
X : biomass concentration in reactor (mg/L)
X, : return biomass concentration (mg/L)
X. : effluent biomass concentration (mg/L)
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Table 37. Experimental data for K, K, Ky, v for Conditions 3

Tests 1 2 3 4
BODs 0.0093 0.0093 0.0101 0.0094
1/Sc(L/mg)
CODwm 0.0110 0.0102 0.0113 0.0104
BODs 4.70 4.86 498 491
x-t/(Si-Se)(day)
CODwm 5.53 5.37 557 5.40

BODs 0.2128 0.2058 0.2009 0.2039

(Si-Se)/x-t(day )

CODan 0.1809 0.1864 0.1796 0.1851

1/6c(day ) 0.0824 0.0828 0.0801 0.0833
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Fig. 89. Relationship between K and Kiax.
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ABSTRACT

Development on NBF Process for the Advanced
Treatment of Domestic Sewage

by
Bae, Jin-Woo

Dept. of Environmental Engineering
Graduate School of Dong-A University

Busan, Korea

In order to evaluate water quality improvement and energy-saving costs
by means of application of a micro-nano bubble diffuser inside an aeration
tank of a sewage treatment plant, the present research compared efficiency
of an existing diffuser with the micro—nano bubble diffuser by evaluating
oxygen transfer efficiency, oxygen transfer rate, and etc. The main
objectives of this research are to develop the pilot plant(NBF A*/O Process)
and to evaluate field applicability for an advanced treatment of sewage by
investigating process comparisons and operating conditions.

Oxygen transfer coefficients(Kr,) of the effluent of primary clarifier were
determined. Air flow in both the conventional bubbles(CB) diffuser and
micro—nano bubbles(MNB) diffuser was set at 1 L/min, and the saturation
oxygen concentrations in the effluent of the primary clarifier for the
conventional diffuser and micro-nano bubbles diffuser with constant inflow
were 4.4 mg/L for 300 mins and 6.8 mg/L for 120 min, respectively. Do
concentrations after 120 min for CB system and MNB system with primary

clarifier effluent are 4.4 mg/Le} 6.8 mg/L. The values of Kra, N and
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VOTR of the effluent of the primary clarifier for the conventional diffuser
were found be to 0.15 hr', 0535 gOyhr 2 1.34 kg/m’ - hr respectively.
The values of Kra, N and VOTR of that for the micro-nano bubbles diffuser
were found be to 091 hr'!, 322 gOy/hr and 804 kg/m’ - hr, respectively.

There were 4 different operating conditions which were Run 1(standard),
Run 2(different retention times), Run 3(different MLSS concentrations) and
Run 4(different recycle ratios) for each batch reactors (effective volume:
660L) to compare CB system with NMB. The NMB system using the
micro—nano bubble diffuser showed 89.4% of BODs removal rate in
conditions of Run 4, compared to a CB system using the existing diffuser, it
appeared slightly higher than 87.4% of the CB system. As T-N removal
rate appeared as 39.3% in the NMB system and appeared as 35.7% in the
CB system, the advanced treatment method by the micro—nano bubble
diffuser appeared as more efficient in removal of dissolved organic matter
and nutrients such as nitrogen and phosphorus.

In order to evaluate an advanced treatment performance of sewage by
using the piolt plant NBF A%/O process(effective volume: 5 mS), there were 4
different operating conditions which were Condition 1, Condition 2, Condition
3 and Condition 4. As a result of water analysis by operation conditions of
Conditions 1~4, maximum average treatment efficiency of BODs, CODun,
T-N and T-P respectively appeared as 78.5%, 79.5%, 36.19% and 64.8%
during an operating period of August 11~November 4. Condition 3 showed
the highest result in case of dissolved organic matter (BODs; and CODwm),
and Condition 4 showed the highest result in case of T-N, and Condition 1
showed the highest result in case of T-P. By judging removal efficiency
among operating conditions of the NBF A%O process, Condition 3 showed
the highest removal efficiency which is 785% in case of BODs and 79.5%
in case of CODwy,, but removal efficiency of nutrients appeared as relatively
low.

Based on the result operated with Condition 3 among operating conditions

of the NBF A%0O process, maximum substrate removal rate(Kmay),
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half-saturated concentration(Ks), endogenous respiration coefficient (Kgq) and
cell synthesis coefficient(Y) were respectively calculated as 0.342 dayfly
69.620 mg/L, 0.0558 day ' and 0.1282 on the basis of BODs maximum
substrate removal rate(Kn.x), half-saturated concentration(Ks), endogenous
The respiration coefficient (Kg) and cell synthesis coefficient(Y) were
respectively calculated as and were respectively calculated as 0.291 dayfly
54.874 mg/L, 0.0186 day ' and 0.3472 on the basis of CODyn As maximum
specific growth rate(ima) of a microorganism was calculated as 0.044 day*1
and 0.101 day ! on the basis of BODs; and CODwy, respectively. It seems
that it brings about positive effects in sewage treatment in spite of
relatively short retention time and change of operating conditions due to
increase of oxygen transfer rate by the micro—nano bubbles. It is judged that
subsequent research would have higher removal efficiency of nutrients by

adding carbon sources.

Key words : Advanced treatment, Denitrification, Dissolved oxygen,

Hydraulic retention time, Micro—nano bubble, Nitrification
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