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Fig. 1.1 Definition of bubbles.



Fig. 1.2 Flow chart of this dissertation.
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Table 1.1 Nanobubble fabrication methods.

Type

Mechanism

Decompression

type

- To generate nanobubbles, Decompression type method uses
the dependency of gas solubility on temperature and pressure. It
is already known as gas solubility is proportional/reversely

proportional to temperature/pressure.

- Prepared supersaturated solution is heated up rapidly or
decompressed in short time. Consequently, nanobubble

nucleation occurs.

Capillary type

- In this method, gas is injected into porous material at high
pressure. Thus, nanobubble formation from a pore mainly
consists of bubble growth and bubble detachment. Bubble

detachment can be induced by buoyancy force or drag force.

- Generally, diameter of fabricated nanobubble is 8.6 times

larger than that of pore.

Static mixer type

- Nanobubble formation in this method consists of making
helical two-phase flow (using a guide vane) and destruction of

gas-liquid mixture (using projections).

- Gas and liquid separated from gas-liquid mixture by helical
flow, and projections placed at gas-liquid interface generate

nanobubbles.

14



Rotational flow

type

- In this method, high speed swirl flow along the center line of
the circular container is used. Strong circulating flow in device

makes pressure drop and automatic inhalation of the gas.

- Shear stress in the liquid brakes gas-liquid mixture and then
micro and nanobubbles are formed. Also, vortex breakdown at
discharge port is breaking theses bubbles into more smaller

bubbles.

Cavitation type

- Cavitation type methods usually uses acoustic cavitation for
nanobubble generation. However, nanobubbles also can be

fabricated at the bottleneck of orifice, venture and so on.

- For example, at the bottleneck of orifice, cavitation occurs due

to velocity increase and pressure drop.
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Fig. 2.1 The principle of nanoparticle tracking analysis principle.

Fig. 2.2 Typical image produced by nanoparticle tracking analysis.
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Fig. 2.5 Nanobubbles fabricated by Decompression type generator (a) image of fabricated

nanobubbles in DI water (b) size distribution of fabricated nanobubbles just after

nanobubble generation.
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Fig. 2.6 Concentration and mean diameter of nanobubbles, just after nanobubble

generation.
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Fig. 2.7 A schematic view of Cavitation type nanobubble generator.

Fig. 2.8 Boundary conditions for finite element simulation.
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Table. 2.1 Material properties used in finite element simulation.

Item Property
Density, kg/m’ 1000
Dynamic viscosity, Pa-s 0.001

Pressure

r-axis

Fig. 2.9 Finite element simulation result.
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Fig. 2.10 Nanobubbles fabricated by Cavitation type generator (a) image of fabricated

nanobubbles in DI water (b) size distribution of fabricated nanobubbles, just after

nanobubble generation.
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Fig. 2.11 Concentration and mean diameter of nanobubbles, just after nanobubble

generation.

Fig. 2.12 Sea waves. Retrieved 6 Dec. 2016 from https://www.dreamstime.com/royalty-

free-stock-images-ocean-sea-wave-pattern-image18952259
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Fig. 2.13 Gas-liquid mixture generator for low-viscosity systems (a) bubble column (b)

plate column (c) mechanically agitated vessel (d) in-line static mixer (e) surface aerator

(f) ejector (g) plunging jet.
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Fig. 2.14 A schematic view of Gas-liquid mixing type nanobubble generator.
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Fig. 2.16 Concentration and mean diameter of nanobubbles, just after nanobubble

generation.
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Table. 2.2 Particles analysis results, just after nanobubble generation.

Nanobubble generation method

Item
Decompression Cavitation Gas-liquid mixing
Mode diameter,
92.67+3.79 101.25+9.00 94.00+9.90
nm
Mean diameter,
120.67+14.57 145.25+17.23 114.50+13.44
nm
Concentration,
2.71£0.08 4.55+0.51 9.38+1.51

x10°® particles/ml
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Table. 3.1 The relationship between (-potential and qualitative stability of the solution.

{-potential, mV Stability of solution
from O to £5 Rapid coagulation or flocculation
from +10 to +£30 Incipient instability
from +30 to +40 Moderate stability
from +40 to +60 Good stability
more than +61 Excellent stability

Table. 3.2 Properties for {-potential measurement.

Nanobubble gasoline

Item Nanobubble water
blend
Electricfield field strength, V/cm 27.45~27.76 83.84~84.32
Refractive index 1.331 1.4
Dielectric constant 78.54 1.98
Viscosity, mPa-s 0.89 0.55
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Nanobubbles

Fig. 3.2 Images of nanobubbles fabricated by (a) Decompression type generator (b) Gas-

liquid mixing type generator, just after nanobubble generation.
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Fig. 3.5 Nanobubbles fabricated in gasoline (a) images of fabricated nanobubbles (b) size

distribution of fabricated nanobubbles, just after nanobubble generation.
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Fig. 3.6 Particle analysis results obtained from nanobubble gasoline blend (a)

concentration (b) mean diameter, just after nanobubble generation.

Fig. 3.7 Heterogeneous nucleation at the bottom of gasoline tank, just after

decompression.
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TIanobubbles

g))

Fig. 3.8 Images of nanobubbles fabricated by decompression type generator (a) just after

fabrication (b) 2 days elapsed (b) 4 days elapsed (d) 7 days elapsed.

77



(O

ﬁNanobubble.s

.{"é \
@

Fig. 3.9 Images of nanobubbles fabricated by gas-liquid mixing type generator (a) just

after fabrication (b) 2 days elapsed (b) 4 days elapsed (d) 7 days elapsed.
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Fig. 3.14 Size distributions of nanobubbles in gasoline versus time.
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Fig. 3.16 Measured C-potential of nanobubble gasoline blend.
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Table. 3.3 Stability of nanobubbles in water.

Item

Nanobubble generation method

Decompression

Gas-liquid mixing

Mode diameter, nm 92.67+3.79 94.00+9.90
Just after Mean diameter, nm 120.67+14.57 114.50+13.44
fabrication . 3 .
Concentration, x10° particles/ml 2.71+0.08 9.38+1.51
{-potential, mV -30.51+0.82 -24.01+1.96
Mode diameter, nm 94.33+18.77 120.00+2.83
2 days Mean diameter, nm 134.00+8.49 151.33+16.62
elapsed . 8 .
Concentration, x10° particles/ml 2.76+0.13 5.15+0.10
{-potential, mV -18.20+0.55 -22.55+0.39
Mode diameter, nm 110.67£18.01 141.33+12.74
4 days Mean diameter, nm 137.67+6.43 211.00+£32.08
elapsed . 8 .
Concentration, x10° particles/ml 2.47+0.17 3.77+0.43
{-potential, mV -20.7440.62 -19.67+0.52
Mode diameter, nm 91.50+38.90 301.00+93.34
7 days Mean diameter, nm 124.67+17.93 367.67+49.80
elapsed . 8 .
Concentration, x10° particles/ml 2.63+0.74 2.62+0.63
{-potential, mV -19.01+0.20 -13.72+0.84
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Table. 3.4 Stability of nanobubbles in gasoline.

Item

Nanobubble generation method

Decompression

Gas-liquid mixing

Mode diameter, nm

123.00£23.02

Just after Mean diameter, nm 159.00+£31.91 -
fabrication . 3 .

Concentration, x10° particles/ml 11.25+2.77 -

{-potential, mV -28.02+7.96 -

Mode diameter, nm 187.00+45.51 -

76 days Mean diameter, nm 200.67+46.88 -
elapsed . 8 .

Concentration, x10° particles/ml 10.45+£2.21 -

{-potential, mV -23.3844.17 -

Mode diameter, nm 107.00+11.98 -

121 days Mean diameter, nm 146.80+8.11 -
elapsed . 8 .

Concentration, x10° particles/ml 10.87+0.64 -

{-potential, mV -27.90+10.41 -
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Table. 4.1 Experimental cases.

Item Temperature, °C Temperature holding time, min
Nanobubble water 40, 60, 80 5
40, 50, 60, 70, 80 5
DI water
50 60
Thermometer
5
—_
o
:‘J
m
& Nanobubble water
or DI water

Hot plate

Fig. 4.1 A schematic view of experimental setup.
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60 °C, 80 °C &= 7}g3e Holl| A3 YL JASE Zh2F 0.57£0.03 x10°
particles/ml, 0.67+0.08 x10°® particles/ml, 0.83+0.10 x10® particles/ml & L}E}EO 1
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Fig. 4.2 Particle analysis results of nanobubble water, just after fabrication.
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Fig. 4.4 (a) image of nanobubbles (b) size distribution of nanobubbles obtained from

heated DI water (80 °C).

114



(a 8
_) 12 X0
E : T
§ 1.0 1 1
2 :
£ 08 I
& [ it
.E 0.6 -: l
£ o4 i
g : T
2 02
=] L
S :

00 T T T T T

40 50 60 70 80
. Applied temperature, °C
(
) 200
[ ] Mean diameter
[ 1 Mode diameter

150 +
= T ] |
[=]
- i l L [ T T L
£ 100 | L I N Ll
g e
=S
= 50 A

0
40 50 60 70 80

Applied temperature, °C

Fig. 4.5 Particle analysis results obtained from heated DI water (a) concentration (b)

mean and mode diameter.

115



Table. 4.2 Particle analysis results obtained from heated DI water.

Item Concentration, Mean diameter, Mode diameter,
Temperature, °C x10® particles/ml nm nm
40 0.14+0.01 128.33+14.74 125.00+19.03
50 0.33+0.06 130.67+17.79 116.50+14.08
60 0.62+0.12 100.75+11.62 105.33+19.50
70 0.77+0.09 89.00+18.68 97.50+16.26

80 1.03+0.08 116.00+£19.43 127.25+8.18
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x10°® particles/ml, 0.18+0.06 x10® particles/ml, 0.19+0.03 x10® particles/ml & L}E}5TH
gk 50 °C o =g FHol 60 #xF FASE 2HA ALE Y Ee]
MAFAME 5 & FA4 Aot TdEd Aol uyeoew, 7id
AN E A7 242 0.38+0.07 x10° particles/ml, 0.44+0.04 x10° particles/ml,
0.39+0.08 x10° particles/ml ¢ Y=wEo] AAEAC 2y 7}E o] Fo
ojojAl= Wzl M= UwBEe VAT Ao, ¥ sAUE 747
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ettt olE  F3  EAHErE REHbSRE UYxesEY JiASTE
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Table. 4.3 The relationship between heat treatment and nanobubble diameter.

Temperature
holding time Thermal treatment  Mean diameter, Mode diameter,
9
cycle nm nm
min

heating 116.50+14.08 130.67+17.79

lst
cooling 122.00+£35.52 121.00£33.12
heating 143.80+26.52 127.00+26.90

5 21’ld
cooling 124.00+£35.27 101.00+13.21
heating 131.20+42.78 108.60+15.96

3rd
cooling 118.80+4.27 122.80+12.60
heating 133.80+34.54 115.80426.72

lst
cooling 131.00£20.36 112.60+£37.33
heating 126.40+0.85 111.15+17.47

60 2"
cooling 113.05+27.65 99.35+19.59
heating 134.00+34.04 102.00+31.80

3rd
cooling 130.40+31.60 141.50+44.68
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52 A% "

521 A3 A=

ol

2 AT e e ES sty f& S/ (No. 119, HPLC grade,
Duksan Pure Chemicals Co., Korea)2} =4 7| A (purity: 99.999%, Shinyoung Gas
Co., Korea)E AF-&3t}. A3 0] v %= DMEM (Dulbecco’s modified Eagle’s

medium)°ll 10 %2 A} 1 %] AAE &3] Az T3 7] A 5ol

oE FHES 4E AYe FASA @n ARNEYE we oYz

A483e.
522 7 W U=HE B4
A ol e A4 JEe B s £E gygon, 44

ZIRtel digk 2pA g 82 27 3 del sl Sl

O

523 Y= B4

B AT E AFAEJ] MAFE 5T & e 405 nm Ho]A7b
A2y Jre9dx 2 E2 A2 (NanoSight LM10-HSBFT14, Quantum Design
Korea, Korea)E ©]-&3] Y= Ed g e #4445 FIdA de 4=
Fhat7] sl AR g 24 A FA 7PH L gl gk 2R g

Wge 2% 24 23804 HeE o] Yt
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5.2.4 MX 8]

U 4 Hyg 2 AE #lg vixele] £33 A= Table. 5.1 o Az dl
UeRlon, HFHOR 5~20 %o Y=g FE AXE ufg xR &3}
UeE &3 alg mAE Az =3k A3 27l tisk AAg Ae
Table. 5.2 ol “g&]a eERWT

AE g v 1 ml B 1 WS ME7E 5ol Sl AHEelA AlE
ks AP o, A E7E a e well viehe] & RALLEE 12 A7 F9O

g W A= wASL 3 A7 24 A7kwr)

A Gk o] F, v

(A
(o

MorEs Az AR

-

filo

#F9ggdon, ols 9l =¥ A9  (inverted
microscope, Nicon Eclipse Ti with 512scEMCCD Camera (%10)), Nicon Instruments Inc.,

Japan)s ARE AT ZAIAHow H53 ARRlA AE FE

=

i, °olE

A3} (normalization) A7 Yx=®Eo] AMXE  wjgo] uRE= IS

Aokt EF R AT AET Ara FAL A G132

N, .
Normalized growth rate = —<2mee (5.1)

control

f7]elM N,

experimental

3N, & 27 QT gREAA vhebd Az

control
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Table. 5.1 Sterilization of nanobubble water.

i Autoclave 100 ml bottles at 110 °C for 30 min.

ii Prepare the 100 ml nanobubble water under the UV-ready laminar hood.

iii UV radiation for 2 hours.

After above metioned sterilization, mix the Nanobubble water with certain

v

amount of cell culture medium.

Table. 5.2 Experimental cases.

Cell culture medium

Cell type
Base culture medium Nanobubble water, %
0
NIH3T3 DMEM + Fetal bovine serum (10 %) >
(Fibroblast) + Penicillin streptomycin (1 %) 10
20
0
MC3T3 MEM alpha + Fetal bovine serum (10 %) >
(Osteoblast) + Penicillin streptomycin (1 %) 10
20
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Fig. 5.1 Particle analysis results of nanobubble water, just after fabrication.
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100 pm

Fig. 5.2 Images of NIH3T3 cells, 0 % of nanobubble water (a) 0 day elapsed (b) 1 day

elapsed (c) 2 days elapsed (d) 3 days elapsed.
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100 pm

Fig. 5.3 Images of NIH3T3 cells, 20 % of nanobubble water (a) 0 day elapsed (b) 1 day

elapsed (c) 2 days elapsed (d) 3 days elapsed.
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Fig. 5.4 Normalized growth rate of NIH3T3 cell.

Table. 5.3 Normalized growth rate of NIH3T3 cell.

Normalized growth rate

Elapsed days
0% 5% 10 % 20 %
0 1.00 1.00 1.00 1.00
(-) (-) (-) (-)
. 1.47 2.49 2.66 2.80
(47.0 %) (149.0 %) (166.0 %) (180.0 %)
5 2.04 3.44 3.71 3.78
(38.8 %) (38.2 %) (39.5 %) (35.0 %)
3 2.94 5.07 4.97 5.52
(44.1 %) (47.4 %) (34.0 %) (46.0 %)

Numbers in bracket means increment of normalized growth rate expressed as a

percentage.
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Fig. 5.5 Normalized growth rate of MC3T3 cell.

Table. 5.4 Normalized growth rate of MC3T3 cell.

Normalized growth rate

Elapsed days
0% 5% 10 % 20 %
0 1.00 1.00 1.00 1.00
(-) (-) (-) (-)
. 2.46 4.11 4.84 3.23
(146.0 %) (311.0 %) (384.0 %) (223.0 %)
5 6.03 7.88 7.90 6.24
(145.1 %) 91.7 %) (63.2 %) (93.2 %)
3 9.52 13.73 19.65 14.95
(57.9 %) (74.2 %) (148.7 %) (139.6 %)

Numbers in bracket means increment of normalized growth rate expressed as a

percentage.
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6.2 A3 "

6.2.1 A3 A=

2 AT e e E £ Ad5E AAdst7] 98 7FE® (Octane rating:
91-94, Hyundai Oilbank Co. Ltd., Korea)Z} <=4~ 7| A| (purity: 99.999%, Shinyoung
Gas Co., Korea)s AFEITE T3 A7) Alse] g F714< 43t A9

THEA G ARALREE T2 a2 AT

6.22 7F&d Y Yx=HE A

A4S ol8F henld A4 JPEE B vl B amg

rid

e, yremE A 7IHel i AT HE2 2 & 3 doll HeH o

= Aol s AR MAsE 952 5 = 638 nm @Ol A7)
AaE Yredx 4 B4 A (NanoSight LM10-HSBFT14, Quantum Design
Korea, Korea)E ©]-&3] Y= Ed g e #4445 FIA d=e 4=

T e AR Y=g =4 24 7 R A o AAT
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6.2.4 A A|F

2 A A AREE QRS X E FAL WA (port fuel injection)e] 4 A Y
7hE™ dxlolw, 23t 3} wAo] A& =] Ut (Sirius G4CP, Hyundai
Motors, Korea). 112 uf7]=S 1997 cm’ o, A &7]¥ (natural aspiration

type)ol oF. 3 olX

H
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Fig. 6.1 A schematic diagram of experimental apparatus.
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Table. 6.1 Specifications of the test engine.

Engine type Four cylinder spark ignition engine
Bore 85.0 mm

Stroke 88.0 mm

Displacement volume 1997.0 cm’

Compression ratio 10.0

Ignition system Distributor less ignition
Maximum power 98.57 kW @ 6000 rpm

Maximum torque 180.44 N-m @ 4500 rpm

Vavle timing IVO 15° BTDC

IvVC 53°ABDC

EVO 51° BBDC

EVC 17° ATDC
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Fig. 6.2 Particle analysis result of nanobubble gasoline blend, just after fabrication.

Table. 6.2 Properties of nanobubble gasoline blend and conventional gasoline.

Nanobubble Conventional
Properties Method
gasoline blend gasoline
Viscosity, mPa-s 0.55 0.58
Surface tension,
13.93 13.54
mN/m
Density at 15 °C,
3 772.0 738.2 KS M ISO 12185:2003
kg/m
Hydrogen, wt% 13.23 14.16 JIS K 2536-2:2003
H,0, mg/kg 81 73 KS M ISO 12937:2003
Low heating value,
43.31 43.23 KS M 2057:2006

MlJ/kg
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Fig. 6.3 Engine brake power, with variation of engine loads.

Table. 6.3 Engine brake power.

Engine brake power
Engine load, %

Nanobubble gasoline blend Conventional gasoline
40 26.98+0.15 25.95+0.04
60 29.78+0.14 28.88+0.07
80 29.82+0.16 29.60+0.12

157



o -$- 7 A
VAR S s R
Atglom, 71<&Eo

(cycle)©ll

T

-

B34

o] &4
WSk Varde [109]

o} [108].

T

0]
T

o

=7}

B
o

9|

J
HH

B

Aol & W& (cycle to cycle variation)®] #A~%TF [110].

oH

—_
file)

iy

4

b

™

o

Ao

F: 40 %, 60 %,

1ol A

e} 3} A1717F 242 2000 pm T 11° BTDC 2 1A

o F7MI7F 10 =24
"]v_—

80 %)< Fig. 6.4 o YEFRATE

7}
El

4

ol

ol

il

o, tH

T A2HES 747} 269.35+1.72 g/kWh 9} 290.95+0.15 g/kWh & S E o,

i

O
fs

4

ToR

ol

il

=]

F7F 60 %, 80 % w, v=H

5]

il

Ho]F AT} (Table. 6.4). ©] ZHE =]

158



-
T

3.3}

o

59 HwEsh We sk Wt

=
R

ol a9l W

A2 A4 (constant

mK

olFH, o2 <l

=
=

1:11_]_,

volume combustion)®ll 7}7} 7|

o} [111].

13

o 7]

A3} Al7] (iginition timing)¥ G E FAF A7) (fuel

-
T

Aol A

44 <

HeR

Aut

injection timing)©]

ola1 A= WA (fuel decomposition)

= =
= =

7]ZF (combustion period)

ol

2+3}7] (hydroxyl radical) 3%

=1
=

(knocking)

< €71 (octane number)E

o]
Jo

159



Fig. 6.4 Brake specific fuel consumption, with variation of engine loads.

Table. 6.4 Brake specific fuel consumption.

Brake specific fuel consumption
Engine load, %

Nanobubble gasoline blend Conventional gasoline
40 269.35+1.72 290.95+40.15
60 303.89+0.74 311.63£1.11
80 300.95+1.12 321.44+1.33
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Fig. 6.5 Gas chromatography/mass spectrometry analysis of conventional gasoline and

nanobubble gasoline blend.
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—— measured from nanobubble water
Zhang et al. (2007)
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ABSTRACT

A Study on Nanobubble Generation and its Applications

Seung Hoon Oh
School of Mechanical Engineering

The Graduate School of Chung-Ang University

Nanobubbles have drawn great attention due to their long lifespan, large specific surface
area, various applications in many fields, however, there are still unsolved problems such as
small population number, low signal to noise (SN) ratio, and ambiguous stability mechanism.
Thus, in this study, nanobubble generation methods which can fabricate high concentration
nanobubble solution were developed and evaluated on their performance to solve the
problems mentioned above. Decompression, Cavitation, Gas-liquid mixing type nanobubble
fabrication method were developed, and results showed that these methods are effective to
generate nanobubbles that are smaller than 200 nm in diameter and 2.0~10.0 x10® particles/ml
in concentration. However, Decompression type method is the only method which can
generate nanobubbles in both DI water and fuel. In addition, the stability of bubbles fabricated
through Decompression type method showed a remakable difference (Nanobubble water: 7
days at least, Nanobubble gasoline blend: 121 days at least). Meanwhile, Gas-liquid mixing
type method is the most rapid method to fabricate nanobubbles, however, nanobubble stability
is not as good as those fabricated through Decompression type method. Such an excellent

stability of naobubbles is due to negatively charged surface (initial {-potential: -24.01~-30.51
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mV) which suppresses the bubble collision and coalescence. Moreover, thermal stability of
nanobubbles fabricated through Decompression type method was investigated. The heating
experiment showed that nanobubbles, once formed, do not disappear easily (about 0.2 x10°
particles/ml at least), and although their stability depends on dissolved gas concentration, the
supersaturated solution is not a prerequisite for nanobubble formation. Lastly, to investigate
the utility of nanobubble solution in engineering field, nanobubble blended culture medium
and fuel were fabricated and then cell culture and engine test were performed. Fibroblasts and
osteoblasts were cultured, and obtained results showed that mixed nanobubble water in
culture medium (5~20 %) improves the cell proliferation (36.97~111.78 %). This
improvement was obtained despite the presence of the DI water in nanobubble blended
culture medium, and this means that nanobubble blended culture medium could be applied to
reduce the amount of ingredient (ex: serum) usage in culture medium. Also, fabrication of
nanobubble blended gasoline, measurement of its properties, engine test (engine speed: 2000
rpm, engine load: 40~80 %), and component analysis were performed. Obtained results
showed that the nanobubbling process in gasoline does not make significant change of the
gasoline properties, but improves the brake power (0.7~4.0 % increase) and fuel consumption
(2.5~7.4 % decrease). In addition, gas chromatography/mass spectrum revealed that the
chemical composition of the gasoline was changed during the nanobubble generation,
specifically by means of replacement reactions of functional groups. Therefore, it is sure that
improvements in combustion characteristics comes from hydrogen gas in gasoline and

changed chemical composition of gasoline due to nanobubble or nanobubbling process.

Keywords: Nanobubble, Decompression, Gas-liquid mixing, Nanobubble stability, Particle
analysis, C-potential, cell culture, Engine test, Combustion characteristics, Gas

chromatography/mass spectrometry
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